(1)如圖,在平行四邊形ABCD中,EBC中點(diǎn),AE的延長線與DC的延長線相交于點(diǎn)F,證明:△ABE≌△FCE

 

(2)如圖,熱氣球的探測(cè)器顯示,從熱氣球看一棟高樓頂部的仰角,看這棟高樓底部的俯角,熱氣球與高樓的水平距離,這棟高樓有多高(,結(jié)果保留小數(shù)點(diǎn)后一位)?

 

 

【答案】

218.6m

【解析】(1)證明:∵ABCD是平行四邊形ABCD的對(duì)邊,

ABCD, ······························ 2分

∴∠F=∠FAB.····························· 4分

EBC的中點(diǎn), ∴BE=CE,······················· 5分

又∵ ∠AEB=∠FEC,  ·························· 6分

∴ △ABE≌△FCE. ··························· 7分

(2)解:如圖,a = 45°,β= 60°, AD=80.

在Rt△ADB中,

,

.······ 2分

在Rt△ADC中,

,

      ∴.·· 5分

答:這棟樓高約為218.6m.   7分

(1)利用平行四邊形的兩組對(duì)邊分別平行即可得到兩角相等以及平行四邊形對(duì)邊相等即可證明兩三角形全等

(2)求這棟樓的高度,即BC的長度,又因?yàn)锽C=BD+DC,所以分別求出BD,CD就可以.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖,在平行四邊形ABCD中,O是對(duì)角線AC的中點(diǎn),過O點(diǎn)作直線EF分別交BC、AD于E、F.
(1)求證:BE=DF;
(2)若AC,EF將平行四邊形ABCD分成的四部分的面積相等,指出E點(diǎn)的位置,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形ABC0中,已知點(diǎn)A、C兩點(diǎn)的坐標(biāo)為A(
5
5
),C(2
5
,0).
(1)求點(diǎn)B的坐標(biāo).
(2)將平行四邊形ABCO向左平移
5
個(gè)單位長度,求所得四邊形A′B′C′O′四個(gè)頂點(diǎn)的坐標(biāo).
(3)求平行四邊形ABCO的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,AC,BD相交于點(diǎn)O,OE∥AB,交BC于點(diǎn)E,連精英家教網(wǎng)接DE,交OC于點(diǎn)F,作FG∥AB,交BC于點(diǎn)G.
(1)求證:
CFFO
=2

(2)求證:點(diǎn)G是線段BC的一個(gè)三等分點(diǎn);
(3)請(qǐng)依照上面畫法,在原圖上畫出BC的一個(gè)四等分點(diǎn)(保留作圖痕跡,不要求寫作法和證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平行四邊形OABC中,已知A(
3
,
3
),C(2
3
,0)

(1)求點(diǎn)B的坐標(biāo);
(2)將平行四邊形OABC向左平行移動(dòng)
3
個(gè)單位長度,再向下平行移動(dòng)2
3
個(gè)單位長度,寫出所得四邊形A′B′C′O′的四個(gè)頂點(diǎn)坐標(biāo);并求四邊形ABCO的面積;
(3)作四邊形OABC關(guān)于y軸對(duì)稱圖形,并寫出對(duì)稱圖形各頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平行四邊形ABCD中,E、F分別為AB、CD的中點(diǎn),連接DE、EF、FB,則圖中共有平行四才邊形的個(gè)數(shù)(平行四邊形ABCD除外)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案