【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E. 求證:AB=BE.
【答案】證明:連接OD,如圖, ∵PD切⊙O于點(diǎn)D,
∴OD⊥PC,
∵BE⊥PC,
∴OD∥BE,
∴∠E=∠ODA,
∵OA=OD,
∴∠ODA=∠OAD,
∴∠OAD=∠E,
∴BA=BE.
【解析】連接OD,根據(jù)切線的性質(zhì)得OD⊥PC,由于BE⊥PC,則可判斷OD∥BE,根據(jù)平行線的性質(zhì)得∠E=∠ODA,然后證明∠OAD=∠E得到BA=BE.
【考點(diǎn)精析】掌握切線的性質(zhì)定理是解答本題的根本,需要知道切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,陰影部分組成的圖案既是關(guān)于x軸成軸對稱的圖形又是關(guān)于坐標(biāo)原點(diǎn)O成中心對稱的圖形.若點(diǎn)A的坐標(biāo)是(1,3),則點(diǎn)M和點(diǎn)N的坐標(biāo)分別是( )
A.M(1,﹣3),N(﹣1,﹣3)
B.M(﹣1,﹣3),N(﹣1,3)
C.M(﹣1,﹣3),N(1,﹣3)
D.M(﹣1,3),N(1,﹣3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織290名學(xué)生進(jìn)行野外考察活動,行李件數(shù)比學(xué)生人數(shù)的一半還少45.學(xué)校計劃租用甲、乙兩種型號的汽車共8輛,經(jīng)了解,甲種汽車每輛最多能載40人和10件行李,乙種汽車最多能載30人和20件行李.
(1)求行李有多少件?
(2)現(xiàn)計劃租用甲種汽車x輛,請你幫學(xué)校設(shè)計所有可能的租車方案.
(3)如果甲、乙兩種汽車每輛的租車費(fèi)分別是2000元、1800元,請你選擇最省錢的一種租車方案,并求出至少的費(fèi)用是多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負(fù)實(shí)數(shù)x“四舍五入”到個位的值記為[x].即當(dāng)n為非負(fù)整數(shù)時,若n﹣ ≤x<n+ ,則[x]=n.如:[3.4]=3,[3.5]=4,…根據(jù)以上材料,解決下列問題:
(1)填空:
①若[x]=3,則x應(yīng)滿足的條件:________;
②若[3x+1]=3,則x應(yīng)滿足的條件:________;
(2)求滿足[x]= x﹣1的所有非負(fù)實(shí)數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠CAB=70°,將△ABC繞點(diǎn)A按逆時針方向旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),△PMN周長的最小值是6cm,則∠AOB的度數(shù)是( 。
A. 25° B. 30° C. 35° D. 40°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,直徑AB與弦CD相交于點(diǎn)P,∠CAB=40°,∠APD=65°.
(1)求∠B的大。
(2)已知圓心0到BD的距離為3,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AD⊥BC,AE平分∠BAC交BC于點(diǎn)E.
(1)若∠B=20°,∠C=80°,求∠EAC和∠EAD的大。
(2)若∠C>∠B,由(1)的計算結(jié)果,你能發(fā)現(xiàn)∠EAD與∠C﹣∠B的數(shù)量關(guān)系嗎?寫出這個關(guān)系式,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知P(3,3),點(diǎn)B、A分別在x軸正半軸和y軸正半軸上,∠APB=90°,則OA+OB=________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com