【題目】如圖:已知銳角∠AOC,依次按照以下順序操作畫(huà)圖:
(1)在射線OA上取一點(diǎn)B,以點(diǎn)O為圓心,OB長(zhǎng)為半徑作,交射線OC于點(diǎn)D,連接BD;
(2)分別以點(diǎn)B,D為圓心,BD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接ON,MN.
根據(jù)以上作圖過(guò)程及所作圖形可知下列結(jié)論:①OC平分∠AON;②MN∥BD;③MN=3BD;④若∠AOC=30°,則MN=ON.其中正確結(jié)論的序號(hào)是_____.
【答案】①②④
【解析】
①正確.根據(jù)可以推出結(jié)論.
②正確.連接DM,證明∠BDM=∠DMN即可.
③錯(cuò)誤.首先證明BD=BM=DN,再根據(jù)BM+BD+DN>MN,可得MN<3BD,即可判斷.
④正確.證明△MON是等腰直角三角形即可判斷.
解:由作圖可知:,
∴∠AOC=∠DON,即OC平分∠AON,故①正確.
連接DM,
∵,
∴∠BDM=∠DMN,
∴BD∥MN,故②正確,
∵,
∴BM=BD=DN,
∵BM+BD+DN>MN,
∴MN<3BD,故③錯(cuò)誤,
若∠AOC=30°,則∠MON=90°,
∴△MON是等腰直角三角形,
∴MN=ON,故④正確.
故答案為①②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=2,O是BC邊的中點(diǎn),點(diǎn)E是正方形內(nèi)一動(dòng)點(diǎn),OE=2,連接DE,將線段DE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得DF,連接AE、CF.則線段OF長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在已知的△ABC中,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MN交AB于點(diǎn)D,連接CD.若AD=AC,∠A=80°,則∠ACB的度數(shù)為( )
A.65°B.70°C.75°D.80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方形ABCD與正方形CEFG,M是AF的中點(diǎn),連接DM,EM.
(1)如圖1,點(diǎn)E在CD上,點(diǎn)G在BC的延長(zhǎng)線上,請(qǐng)判斷DM,EM的數(shù)量關(guān)系與位置關(guān)系,并直接寫(xiě)出結(jié)論;
(2)如圖2,點(diǎn)E在DC的延長(zhǎng)線上,點(diǎn)G在BC上,(1)中結(jié)論是否仍然成立?請(qǐng)證明你的結(jié)論;
(3)將圖1中的正方形CEFG繞點(diǎn)C旋轉(zhuǎn),使D,E,F(xiàn)三點(diǎn)在一條直線上,若AB=13,CE=5,請(qǐng)畫(huà)出圖形,并直接寫(xiě)出MF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形的對(duì)角線、交于點(diǎn),分別過(guò)點(diǎn)、作,,連接交于點(diǎn).
(1)求證:;
(2)當(dāng)時(shí),判斷四邊形的形狀?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=x﹣2的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,點(diǎn)D的坐標(biāo)為(﹣1,0),二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)A,B,D三點(diǎn).
(1)求二次函數(shù)的解析式;
(2)如圖1,已知點(diǎn)G(1,m)在拋物線上,作射線AG,點(diǎn)H為線段AB上一點(diǎn),過(guò)點(diǎn)H作HE⊥y軸于點(diǎn)E,過(guò)點(diǎn)H作HF⊥AG于點(diǎn)F,過(guò)點(diǎn)H作HM∥y軸交AG于點(diǎn)P,交拋物線于點(diǎn)M,當(dāng)HEHF的值最大時(shí),求HM的長(zhǎng);
(3)在(2)的條件下,連接BM,若點(diǎn)N為拋物線上一點(diǎn),且滿足∠BMN=∠BAO,求點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中(如圖),已知點(diǎn)A在x軸的正半軸上,且與原點(diǎn)的距離為3,拋物線y=ax2﹣4ax+3(a≠0)經(jīng)過(guò)點(diǎn)A,其頂點(diǎn)為C,直線y=1與y軸交于點(diǎn)B,與拋物線交于點(diǎn)D(在其對(duì)稱(chēng)軸右側(cè)),聯(lián)結(jié)BC、CD.
(1)求拋物線的表達(dá)式及點(diǎn)C的坐標(biāo);
(2)點(diǎn)P是y軸的負(fù)半軸上的一點(diǎn),如果△PBC與△BCD相似,且相似比不為1,求點(diǎn)P的坐標(biāo);
(3)將∠CBD繞著點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn),使射線BC經(jīng)過(guò)點(diǎn)A,另一邊與拋物線交于點(diǎn)E(點(diǎn)E在對(duì)稱(chēng)軸的右側(cè)),求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點(diǎn)P放在兩對(duì)角線AC,BD的交點(diǎn)處,以點(diǎn)P為旋轉(zhuǎn)中心轉(zhuǎn)動(dòng)三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點(diǎn)分別為E,F(xiàn).
(1)當(dāng)PE⊥AB,PF⊥BC時(shí),如圖1,則的值為 ;
(2)現(xiàn)將三角板繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;
(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當(dāng)60°<α<90°,且使AP:PC=1:2時(shí),如圖3,的值是否變化?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,O為BD中點(diǎn),以BC為邊向正方形內(nèi)作等邊△BCE,連接AE并延長(zhǎng)交CD于F,連接BD分別交CE、AF于G、H,下列結(jié)論:①;②;③;④;⑤:,其中正確的是__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com