【題目】已知如圖,在矩形ABCD中,AB=4cm,BC=7cm,
(1)點(diǎn)F在邊BC上,且 BF=3,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿A→D→C→F運(yùn)動,設(shè)點(diǎn)P運(yùn)動的時間為t秒,求當(dāng)t為何值時,△AFP為等腰三角形?
(2)如圖2,將長方形ABCD折疊,折痕為MN,點(diǎn)A的對應(yīng)點(diǎn)A′落在線段BC上,當(dāng)點(diǎn)A′ 在BC上移動時,點(diǎn)M、N也隨之移動,若限定點(diǎn)M、N分別在線段AB、AD上移動,則點(diǎn)A′ 在線段BC上可移動的最大距離是___________.
【答案】(1)5s,6s,8s,s;(2)( -3)cm;
【解析】
(1)利用輔助圓確定點(diǎn)P的位置,再利用等腰三角形的性質(zhì)判定定理分別確定點(diǎn)P的運(yùn)動路程,即可得到運(yùn)動時間;
(2)利用M,N的運(yùn)動位置確定A′的最大運(yùn)動位置即可;
解:(1)①如圖,以A為圓心,AF長為半徑畫圓,交AD于 ,則AF=A
在Rt△ABF中,AB=4cm,BF=3cm,
∴AF= =5cm;
∴AP1=AF=5cm;
∴t1=5s;
∴當(dāng)t1=5s時,
②如圖,以F為圓心,AF長為半徑畫圓,交AD于 ,則FA=F,交DC于 ,則FA=F
∵BF=3cm, AB=4cm,
∴FA= =5cm;
∴FP2=FP3=FA=5cm,
作FG⊥AD于G,則AP2=2AG=2BF=6cm,
∴t2=6s;
又∵BC=7cm,
∴FC=7-3=4cm,
∴CP3= =3cm,
∴DP3=1cm,
∴AD+DP3=8cm,
∴t3=8s;
③作AF的垂直平分線,交AD于 ,交AF于H,連接F
∵ABCD為矩形,
∴AD∥BC,∠B=90°,
∴∠DAF=∠AFB,
又∠AHP4=∠B=90°,
∴△AHP4∽△ABF,
,
∴AP4=,
∴t4=s;
綜上,當(dāng)t=5s,6s,8s,s時,△AFP為等腰三角形。
(2)如圖, 當(dāng)點(diǎn)M與點(diǎn)D重合時,
根據(jù)翻折對稱性可得:DA′=DA=7cm,
在Rt△A′CD中,
A′C= =cm,
如圖,當(dāng)點(diǎn)N與點(diǎn)B重合時,
根據(jù)翻折對稱性可得BA′=AB=4cm.
∵A′C=CB-BA′,
∴A′C=3cm.
∴點(diǎn)A′在BC邊上可移動的最大距離為( -3)cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B.該村人均耕地面積y與總?cè)丝趚成正比例
C.若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D.當(dāng)該村總?cè)丝跒?0人時,人均耕地面積為1公頃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的圖象如圖所示,則一次函數(shù)y=ax+b與反比例函數(shù)y= 在同一平面直角坐標(biāo)系內(nèi)的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)的坐標(biāo)分別是.
(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標(biāo)系;
(2)請畫出關(guān)于軸對稱的;
(3)請在軸上求作一點(diǎn),使的周長最小,并寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的角平分線,DF⊥AB,垂足為F,DE=DG,△ADG和△AED的面積分別為40和28,則△EDF的面積為( 。
A. 12 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角墻角AOB(OA⊥OB,且OA、OB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2 .
(1)求這地面矩形的長;
(2)有規(guī)格為0.80×0.80和1.00×1.00(單位:m)的地板磚單價分別為55元/塊和80元/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費(fèi)用較少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQ, BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么形狀的三角形?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,下列給出四個結(jié)論中,正確結(jié)論的個數(shù)是( )個
①c>0;
②若點(diǎn)B(﹣ ,y1)、C(﹣ ,y2)為函數(shù)圖象上的兩點(diǎn),則y1<y2;
③2a﹣b=0;
④ <0;
⑤4a﹣2b+c>0.
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC的高為6,在這個三角形所在的平面內(nèi)有一點(diǎn)P,若點(diǎn)P到直線AB的距離是1,點(diǎn)P到直線AC的距離是3,則點(diǎn)P到直線BC的距離可能是_______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com