【題目】如圖,平行四邊形的對角線、相交于點,點是邊的延長線上一點,且,連接.
(1)求證:;
(2)如果,求證:.
【答案】(1)見解析;(2)見解析.
【解析】
(1)由平行四邊形的性質(zhì)得到BO=OD,由等量代換推出OE=OD,根據(jù)平行四邊形的判定即可得到結(jié)論;
(2)根據(jù)等角的余角相等,得到∠CEO=∠CDE,從而可證∠DBE=∠CDE,推出△BDE∽△CDE,即可得到結(jié)論.
證明:(1)∵四邊形ABCD是平行四邊形,
∴BO=OD,
∵OE=OB,
∴OE=OD,
∴∠OBE=∠OEB,∠OED=∠ODE,
∵∠OBE+∠OEB+∠OED+∠ODE=180°,
∴∠BEO+∠DEO=∠BED=90°,
∴DE⊥BE;
(2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,
∴∠CEO=∠CDE,
∵OB=OE,
∴∠DBE=∠CDE,
∵∠BED=∠BED,
∴△BDE∽△DCE,
∴,
∵BD=2OB=2OE,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是直徑AB上的一點,AB=6,CP⊥AB交半圓于點C,以BC為直角邊構(gòu)造等腰Rt△BCD,∠BCD=90°,連接OD.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對線段AP,BC,OD的長度之間的關(guān)系進(jìn)行了探究.
下面是小明的探究過程,請補充完整:
(1)對于點P在AB上的不同位置,畫圖、測量,得到了線段AP,BC,OD的長度的幾組值,如下表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置… | |
AP | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | … |
BC | 6.00 | 5.48 | 4.90 | 4.24 | 3.46 | 2.45 | … |
OD | 6.71 | 7.24 | 7.07 | 6.71 | 6.16 | 5.33 | … |
在AP,BC,OD的長度這三個量中,確定________的長度是自變量,________的長度和________的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標(biāo)系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)OD=2BC時,線段AP的長度約為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋里,裝有若干個完全相同的A、B、C三種球,其中A球x個,B球x個,C球(x+1)個.若從中任意摸出一個球是A球的概率為0.25.
(1)這個袋中A、B、C三種球各多少個?
(2)若小明從口袋中隨機模出1個球后不放回,再隨機摸出1個.請你用畫樹狀圖的方法求小明摸到1個A球和1個C球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線W:y=ax2﹣2的頂點為點A,與x軸的負(fù)半軸交于點D,直線AB交拋物線W于另一點C,點B的坐標(biāo)為(1,0).
(1)求直線AB的解析式;
(2)過點C作CE⊥x軸,交x軸于點E,若AC平分∠DCE,求拋物線W的解析式;
(3)若a=,將拋物線W向下平移m(m>0)個單位得到拋物線W1,如圖2,記拋物線W1的頂點為A1,與x軸負(fù)半軸的交點為D1,與射線BC的交點為C1.問:在平移的過程中,tan∠D1C1B是否恒為定值?若是,請求出tan∠D1C1B的值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著“網(wǎng)購”的增多,快遞業(yè)務(wù)發(fā)展迅速。我市某快遞公司今年八月份與十月份完成投遞的快遞總件數(shù)分別為萬件和萬件,假定該公司每月的投遞總件數(shù)的增長率相同.
(1)求該快遞公司每月的投遞總件數(shù)的月平均增長率;
(2)由于“雙十一”購買量激增,預(yù)計11月需投遞的快遞總件數(shù)的增長率將是原來倍,如果每人每月最多可投遞快遞萬件,該公司現(xiàn)有名業(yè)務(wù)員,是否能完成當(dāng)月投遞任務(wù)?如果不能,需臨時招聘幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于A(﹣1,0)和B點,與y軸交于點C(0,﹣3).
(1)求該拋物線的解析式;
(2)觀察圖象,直接寫出不等式x2+bx+c>0的解集;
(3)設(shè)(1)中的拋物線上有一個動點P,點P在該拋物線上滑動且滿足S△PAB=8,請求出此時P點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx+1=0中,b=;
(1)若a=4,求b的值;
(2)若方程ax2+bx+1=0有兩個相等的實數(shù)根,求方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,臺風(fēng)中心位于點,并沿東北方向移動,已知臺風(fēng)移動的速度為40千米/時,受影響區(qū)域的半徑為260千米,市位于點的北偏東75°方向上,距離點480千米.
(1)說明本次臺風(fēng)是否會影響市;
(2)若這次臺風(fēng)會影響市,求市受臺風(fēng)影響的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程ax2+bx+1=0中,b=;
(1)若a=4,求b的值;
(2)若方程ax2+bx+1=0有兩個相等的實數(shù)根,求方程的根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com