已知反比例函數(shù)y1=的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2),
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱,求△ABC的面積.
【答案】分析:(1)先根據(jù)點(diǎn)A的坐標(biāo)求出反比例函數(shù)的解析式為y1=,再求出B的坐標(biāo)是(-2,-2),利用待定系數(shù)法求一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直線在雙曲線的下方,直接根據(jù)圖象寫出一次函數(shù)的值小于反比例函數(shù)的值x的取值范圍x<-2 或0<x<1.
(3)根據(jù)坐標(biāo)與線段的轉(zhuǎn)換可得出:AC、BD的長(zhǎng),然后根據(jù)三角形的面積公式即可求出答案.
解答:解:(1)∵函數(shù)y1=的圖象過(guò)點(diǎn)A(1,4),即4=,
∴k=4,即y1=,
又∵點(diǎn)B(m,-2)在y1=上,
∴m=-2,
∴B(-2,-2),
又∵一次函數(shù)y2=ax+b過(guò)A、B兩點(diǎn),

解之得
∴y2=2x+2.
綜上可得y1=,y2=2x+2.

(2)要使y1>y2,即函數(shù)y1的圖象總在函數(shù)y2的圖象上方,
∴x<-2 或0<x<1.

(3)

由圖形及題意可得:AC=8,BD=3,
∴△ABC的面積S△ABC=AC×BD=×8×3=12.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式.以及三角形面積的求法,這里體現(xiàn)了數(shù)形結(jié)合的思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
kx
和一次函數(shù)y2=ax+1的圖象相交于第一象限內(nèi)的點(diǎn)A,且點(diǎn)A的橫坐標(biāo)精英家教網(wǎng)為1.過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積1.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y2=ax+1的圖象與x軸相交于點(diǎn)C,求∠ACO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知反比例函數(shù)y1=
kx
的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2),
(1)求這兩個(gè)函數(shù)的關(guān)系式;
(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍;
(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知反比例函數(shù)y1=
k1x
(k1>0)與一次函數(shù)y2=k2x+1,(k2≠0)相交于A、B兩點(diǎn),AC⊥x軸于點(diǎn)C.若S△OAC=1,tan∠AOC=2
(1)求反比例函數(shù)與一次函數(shù)的解析式
(2)求S△ABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知反比例函數(shù)y1=
k
x
(k≠0)
的圖象與一次函數(shù)y2=ax+b(a≠0)的圖象交于點(diǎn)A(-4,1)和點(diǎn)B,直線y2=ax+b分別交x軸、y軸于C、D兩點(diǎn),且tan∠OCD=
1
2

(1)求這兩個(gè)函數(shù)的關(guān)系式,并求出B點(diǎn)的坐標(biāo);
(2)觀察圖象,直接寫出使得y1<y2成立的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,過(guò)A作AD⊥x軸于D,若OA=
5
,AD=
1
2
OD,點(diǎn)B的橫坐標(biāo)為
1
2

(1)求一次函數(shù)的解析式及△AOB的面積.
(2)已知反比例函數(shù)y1和一次函數(shù)y2,結(jié)合圖象直接寫出:當(dāng)y1>y2時(shí),x的取值范圍.
(3)在坐標(biāo)軸上是否存在點(diǎn)P使△OAP為等腰三角形?若存在,請(qǐng)直接寫出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案