已知開口向下的拋物線y=mx2-2x+m2-4經(jīng)過原點(diǎn),則m的值為
-2
-2
分析:先把原點(diǎn)坐標(biāo)代入二次函數(shù)的解析式中可求出m=2或m=-2,由于拋物線開口向下,根據(jù)二次函數(shù)的性質(zhì)得到m<0,則m=-2.
解答:解:把(0,0)代入y=mx2-2x+m2-4得m2-4=0,解得m=2或m=-2,
∵拋物線開口向下,
∴m<0,
∴m=-2.
故答案為-2.
點(diǎn)評(píng):本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征:二次函數(shù)圖象上的點(diǎn)滿足y=ax2+bx+c(a、b、c為常數(shù),a≠0).也考查了二次函數(shù)的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知開口向下的拋物線y=ax2+bx+c與x軸交于M,N兩點(diǎn)(點(diǎn)N在點(diǎn)M的右側(cè)),并且M和N兩點(diǎn)的橫坐標(biāo)分別是方程x2-2x-3=0的兩根,點(diǎn)K是拋物線與y軸的交點(diǎn),∠MKN不小于90度.
(1)求點(diǎn)M和N的坐標(biāo);
(2)求系數(shù)a的取值范圍;
(3)當(dāng)y取得最大值時(shí),拋物線上是否存在點(diǎn)P,使得S△MPN=2
3
?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知開口向下的拋物線y=ax2+bx+c與x軸交于M,N兩點(diǎn)(點(diǎn)N在點(diǎn)M的右側(cè)),并且M和N兩點(diǎn)的橫坐標(biāo)分別是方程x2-2x-3=0的兩根,點(diǎn)K是拋物線與y軸的交點(diǎn),∠MKN不小于90度.
(1)求點(diǎn)M和N的坐標(biāo);
(2)求系數(shù)a的取值范圍;
(3)當(dāng)y取得最大值時(shí),拋物線上是否存在點(diǎn)P,使得數(shù)學(xué)公式?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國(guó)中考數(shù)學(xué)試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2000•甘肅)已知開口向下的拋物線y=ax2+bx+c與x軸交于M,N兩點(diǎn)(點(diǎn)N在點(diǎn)M的右側(cè)),并且M和N兩點(diǎn)的橫坐標(biāo)分別是方程x2-2x-3=0的兩根,點(diǎn)K是拋物線與y軸的交點(diǎn),∠MKN不小于90度.
(1)求點(diǎn)M和N的坐標(biāo);
(2)求系數(shù)a的取值范圍;
(3)當(dāng)y取得最大值時(shí),拋物線上是否存在點(diǎn)P,使得?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2000年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2000•甘肅)已知開口向下的拋物線y=ax2+bx+c與x軸交于M,N兩點(diǎn)(點(diǎn)N在點(diǎn)M的右側(cè)),并且M和N兩點(diǎn)的橫坐標(biāo)分別是方程x2-2x-3=0的兩根,點(diǎn)K是拋物線與y軸的交點(diǎn),∠MKN不小于90度.
(1)求點(diǎn)M和N的坐標(biāo);
(2)求系數(shù)a的取值范圍;
(3)當(dāng)y取得最大值時(shí),拋物線上是否存在點(diǎn)P,使得?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案