(2006•日照)如圖,“五•一”期間在某商貿(mào)大廈上從點(diǎn)A到點(diǎn)B懸掛了一條宣傳條幅,小明和小雯的家正好住在商貿(mào)大廈對(duì)面的家屬樓上,小明在四樓D點(diǎn)測(cè)得條幅端點(diǎn)A的仰角為30°,測(cè)得條幅端點(diǎn)B的俯角為45°;小雯在三樓仰角為45°,測(cè)得條幅端點(diǎn)B的俯角為30°.若設(shè)樓層高度CD為3米,請(qǐng)你根據(jù)小明和小雯測(cè)得的數(shù)據(jù)求出條幅AB的長(zhǎng).
(結(jié)果精確到個(gè)位,參考數(shù)據(jù)=1.73)

【答案】分析:首先分析圖形:根據(jù)題意構(gòu)造直角三角形;本題涉及到兩個(gè)直角三角形△AGD、△AHC,應(yīng)利用矩形性質(zhì)構(gòu)造方程關(guān)系式,進(jìn)而可解即可求出答案.
解答:解:分別過點(diǎn)D、C作DG⊥AB于G點(diǎn),CH⊥AB于H點(diǎn).
∵DG⊥AE,CH⊥AE,
∴DG∥CH,
∵AE∥DF,
∴四邊形DGHC是矩形.
設(shè)AG=x,則BH=x,
在Rt△AGD中,DG=x,
在Rt△AHC中,
∵∠ACH=45°,
∴AH=CH=x,
所以AH-AG=DC=3,即x-x=3,
所以x=,
AB=AG+GH+HB=≈11m,
答:條幅AB的長(zhǎng)是11m.
點(diǎn)評(píng):命題立意:考查利用解直角三角形知識(shí)解決實(shí)際問題的能力.要求學(xué)生應(yīng)用數(shù)學(xué)知識(shí)解決問題,在正確分析題意的基礎(chǔ)上建立數(shù)學(xué)模型,把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•日照)如圖,已知拋物線與x軸交于A(m,0)、B(n,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),點(diǎn)P是拋物線的頂點(diǎn),若m-n=-2,m•n=3.
(1)求拋物線的表達(dá)式及P點(diǎn)的坐標(biāo);
(2)求△ACP的面積S△ACP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省日照市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•日照)如圖,已知拋物線與x軸交于A(m,0)、B(n,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),點(diǎn)P是拋物線的頂點(diǎn),若m-n=-2,m•n=3.
(1)求拋物線的表達(dá)式及P點(diǎn)的坐標(biāo);
(2)求△ACP的面積S△ACP

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《反比例函數(shù)》(04)(解析版) 題型:填空題

(2006•日照)如圖,⊙O的直徑AB=12,AM和BN是它的兩條切線,切點(diǎn)分別為A,B,DE切⊙O于E,交AM于D,交BN于C;設(shè)AD=x,BC=y,則y與x的函數(shù)關(guān)系式是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省黃岡市數(shù)學(xué)中考精品試卷之一(解析版) 題型:填空題

(2006•日照)如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45°,且AE+AF=,則平行四邊形ABCD的周長(zhǎng)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省日照市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•日照)如圖,點(diǎn)P是⊙O的直徑BA延長(zhǎng)線上一點(diǎn),PC與⊙O相切于點(diǎn)C,CD⊥AB,垂足為D,連接AC,BC,OC,那么下列結(jié)論中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP.正確的有( )

A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案