如圖,C為線段BD上一點(不與點B,D重合),在BD同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于一點F,AD與CE交于點H,BE與AC交于點G.
(1)求證:BE=AD;
(2)求∠AFG的度數(shù);
(3)求證:CG=CH.
分析:(1)根據(jù)等邊三角形的性質(zhì)得出AC=BC.CE=CD,∠ACB=∠ECD=60°,求出∠BCE=∠ACD,根據(jù)SAS證△BCE≌△ACD,推出AD=BE即可;
(2)利用(1)中的全等三角形的性質(zhì)得到∠1=∠2.由三角形外角的定義得到:∠1+∠3=∠4=60°,則∠2+∠3=60°.根據(jù)三角形內(nèi)角和定理可以求得∠AFG=60°;
(3)通過證明△ACH≌△BCG(ASA),來證得CG=CH(也可以通過證明△CGE≌△CHD).
解答:(1)證明:∵△ABC和△DEC是等邊三角形,
∴AC=BC,CE=CD,∠4=∠5=60°,
∴∠4+∠6=∠5+∠6,
∴∠BCE=∠ACD,
在△BCE和△ACD中,
BC=AC
∠BCE=∠ACD
   CE=CD  
,
∴△BCE≌△ACD(SAS),
∴BE=AD;

(2)解:∵由(1)知,△BCE≌△ACD,則∠1=∠2.
∵∠1+∠3=∠4=60°,
∴∠2+∠3=60°
∴∠AFG=60°;

(3)證明:∵∠4=∠5=60°
∴∠6=60°
∴∠6=∠4,
在△ACH與△BCG中,
∠6=∠4
AC=BC
∠2=∠1
,
∴△ACH≌△BCG(ASA),
∴CG=CH(也可以通過證明△CGE≌△CHD).
點評:本題考查了全等三角形的判定與性質(zhì),等邊三角形的性質(zhì).全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當(dāng)?shù)呐卸l件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=5,DE=1,BD=8,則AC+CE的最小值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•青田縣模擬)為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數(shù)形結(jié)合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設(shè)BC=x.則AC=
x2+1
,CE=
(8-x)2+25
,則問題即轉(zhuǎn)化成求AC+CE的最小值.
(1)我們知道當(dāng)A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于
10
10
,此時x=
4
3
4
3
;
(2)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,C為線段BD上一點,BC=3,CD=2.△ABC、△ECD均為正三角形,AD交CE于F,則S△ACF:S△DEF的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,C為線段BD上一動點,分別過點B.D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=5,DE=1,BD=8,設(shè)BC=x.

(1)當(dāng)BC的長為多少時,點C到A、E兩點的距離相等?
(2)用含x的代數(shù)式表示AC+CE的長;問點A、C、E滿足什么條件時,AC+CE的值最小?
(3)如圖②,在平面直角坐標系中,已知點M(0,4),N(3,2),請根據(jù)(2)中的規(guī)律和結(jié)論構(gòu)圖在x軸上找一點P,使PM+PN最小,求出點P坐標和PM+PN的最小值.

查看答案和解析>>

同步練習(xí)冊答案