【題目】在平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)P(a,b)和點(diǎn)Q(a,b'),給出如下定義:

b'=,則稱點(diǎn)Q為點(diǎn)P的限變點(diǎn).例如:點(diǎn)(3,﹣2)的限變點(diǎn)的坐標(biāo)是(3,﹣2),點(diǎn)(﹣1,5)的限變點(diǎn)的坐標(biāo)是(﹣1,﹣5).

(1)①點(diǎn)(﹣,1)的限變點(diǎn)的坐標(biāo)是   

②在點(diǎn)A(﹣1,2),B(﹣2,﹣1)中有一個(gè)點(diǎn)是函數(shù)y=圖象上某一個(gè)點(diǎn)的限交點(diǎn),這個(gè)點(diǎn)是   ;

(2)若點(diǎn)P在函數(shù)y=﹣x+3的圖象上,當(dāng)﹣2≤x≤6時(shí),求其限變點(diǎn)Q的縱坐標(biāo)b'的取值范圍;

(3)若點(diǎn)P在關(guān)于x的二次函數(shù)y=x2﹣2tx+t2+t的圖象上,其限變點(diǎn)Q的縱坐標(biāo)b'的取值范圍是b'≥mb'<n,其中m>n.令s=m﹣n,求s關(guān)于t的函數(shù)解析式及s的取值范圍.

【答案】(1)(﹣,﹣1);A;(2)當(dāng)﹣2≤x≤6時(shí),﹣5≤b′≤2;(3)s關(guān)于t的函數(shù)解析式為s=t2+1(t≥1),s的取值范圍是s≥2.

【解析】

(1)①直接根據(jù)限變點(diǎn)的定義直接得出答案;

②點(diǎn)(-1,-2)在反比例函數(shù)圖象上,點(diǎn)(-1,-2)的限變點(diǎn)為(-1,2),據(jù)此得到答案;

(2)根據(jù)題意可知y=-x+3(x≥-2)圖象上的點(diǎn)P的限變點(diǎn)Q必在函數(shù)y=的圖象上,結(jié)合圖象即可得到答案;

(3)首先求出y=x2-2tx+t2+t頂點(diǎn)坐標(biāo),結(jié)合t1的關(guān)系確定y的最值,進(jìn)而用mn表示出s,根據(jù)t的取值范圍求出s的取值范圍.

1)①根據(jù)限變點(diǎn)的定義可知點(diǎn)點(diǎn)(﹣,1)的限變點(diǎn)的坐標(biāo)為(﹣,﹣1);

(﹣1,﹣2)限變點(diǎn)為(﹣1,2),即這個(gè)點(diǎn)是點(diǎn)A.

(2)依題意,y=﹣x+3(x≥﹣2)圖象上的點(diǎn)P的限變點(diǎn)Q必在函數(shù)y=的圖象上.

當(dāng)x=﹣2時(shí),y=﹣2﹣3=﹣5,

當(dāng)x=1時(shí),y=﹣1+3=2,

當(dāng)x=6時(shí),y=﹣6+3=﹣3,

∴當(dāng)﹣2≤x≤6時(shí),﹣5≤b′≤2;

(3)y=x2﹣2tx+t2+t=(x﹣t)2+t,

∴頂點(diǎn)坐標(biāo)為(t,t).

t<1,b′的取值范圍是b′≥mb′<n,與題意不符.

t≥1,當(dāng)x≥1時(shí),y的最小值為t,即m=t;

當(dāng)x<1時(shí),y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].

s=m﹣n=t+(1﹣t)2+t=t2+1.

s關(guān)于t的函數(shù)解析式為s=t2+1(t≥1),

當(dāng)t=1時(shí),s取最小值2,

s的取值范圍是s≥2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于點(diǎn),,把拋物線在軸及其上方的部分記作,將向右平移得,軸交于點(diǎn),,若直線共有個(gè)不同的交點(diǎn),則的取值范圍是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點(diǎn)在第一象限,且過(guò)點(diǎn)(0,1)和(﹣1,0),下列結(jié)論:①ab<0,b2>4,0<a+b+c<2,0<b<1,⑤當(dāng)x>﹣1時(shí),y>0.其中正確結(jié)論的個(gè)數(shù)是(  )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只不透明的袋子中裝有2個(gè)白球和1個(gè)紅球,這些球除顏色外都相同,攪勻后從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球.

(1)用樹(shù)狀圖或列表等方法列出所有可能出現(xiàn)的結(jié)果;

(2)求兩次摸到的球的顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠MON30°,點(diǎn)A1A2、A3在射線ON上,點(diǎn)B1、B2B3在射線OM上,A1B1A2A2B2A3,A3B3A4均為等邊三角形,從左起第1個(gè)等邊三角形的邊長(zhǎng)記a1,第2個(gè)等邊三角形的邊長(zhǎng)記為a2,以此類推,若OA13,則a2=_______a2019=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(2,4),B(4,2),x軸上取一點(diǎn)P,使點(diǎn)P到點(diǎn)A和點(diǎn)B的距離之和最小,則點(diǎn)P的坐標(biāo)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB=90°,OA=90cm,OB=30cm,一機(jī)器人在點(diǎn)B處看見(jiàn)一個(gè)小球從點(diǎn)A出發(fā)沿著AO方向勻速滾向點(diǎn)O,機(jī)器人立即從點(diǎn)B出發(fā)沿直線勻速前進(jìn)攔截小球,恰好在點(diǎn)C處截住了小球如果小球滾動(dòng)的速度與機(jī)器人行走的速度相等,那么機(jī)器人行走的路程BC是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C.

(1)求點(diǎn)C的坐標(biāo)和反比例函數(shù)的解析式;

(2)將等腰梯形ABCD向上平移2個(gè)單位后,問(wèn)點(diǎn)B是否落在雙曲線上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC=AD,ADBC

(1)求證:BD平分∠ABC;

(2)若∠C=78°,求∠D的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案