【題目】依據(jù)我市出租汽車運價與燃料(天然氣)價格聯(lián)動機(jī)制,經(jīng)市政府同意,從2016年11月1日起,市區(qū)出租汽車每乘次起步價降低0.5元(不含非用天然氣出租車).即排氣量1.8L(含1.8L)以下車型由現(xiàn)行起步價3公里9元降低至3公里8.5元;超過3公里每公里運價為2.0元/公里;空駛補(bǔ)貼費為單程載客12公里以上的部分,每公里加收公里運價的50%.
(1)請寫出新運價標(biāo)準(zhǔn)下乘車費用y元與乘車距離x公里之間的函數(shù)關(guān)系式;
(2)小明從家乘車去學(xué)校花費了10元,求他家與學(xué)校之間的距離是多少公里?
【答案】(1) ;(2)3.75公里
【解析】
(1)分0<x≤3、3<x≤12和x>12三種情況分析,當(dāng)0<x≤3時,y值為起步價;當(dāng)3<x≤12時,根據(jù)乘車費用=起步價+2×超出3公里的路程,即可得出y與x之間的函數(shù)關(guān)系式;當(dāng)x>12時,根據(jù)乘車費用=起步價+2×(12﹣3)+2×(1+50%)×超出12公里的路程,即可得出y與x之間的函數(shù)關(guān)系式.綜上即可得出結(jié)論;
(2)求出當(dāng)x=12時,y=26.5,由8.5<10<26.5,可知3<x<12,再令y=2x+2.5=10,求出x的值即可.
解:(1)當(dāng)0<x≤3時,y=8.5;
當(dāng)3<x≤12時,y=8.5+2(x﹣3)=2x+2.5;
當(dāng)x>12時,y=8.5+2×(12﹣3)+2×(1+50%)(x﹣12)=3x﹣9.5.
綜上所述:新運價標(biāo)準(zhǔn)下乘車費用y元與乘車距離x之間的函數(shù)關(guān)系式為:
;
(2)當(dāng)x=12時,y=2x+2.5=26.5,
∵8.5<10<26.5,
∴3<x<12.
當(dāng)y=2x+2.5=10時,x=3.75.
答:小明家與學(xué)校之間的距離是3.75公里.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,將一塊等腰直角三角形的直角頂點放在斜邊的中點處,將三角板繞點旋轉(zhuǎn),三角板的兩直角邊分別交射線、于、兩點.如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況.
(1)觀察圖①,當(dāng)三角板繞點旋轉(zhuǎn)到時,我們發(fā)現(xiàn):__________.(選填“”、“”或“”)
(2)當(dāng)三角板繞點旋轉(zhuǎn)到圖②所示位置時,判斷(1)題中與之間的大小關(guān)系還存在嗎?請你結(jié)合圖②說明理由.
(3)三角板繞點旋轉(zhuǎn),是否能成為等腰三角形?若能,指出所有情況(那寫出為等腰三角形時的長);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y= 的圖象經(jīng)過點(﹣ ,2),則函數(shù)y=kx﹣2的圖象不經(jīng)過第幾象限( )
A.一
B.二
C.三
D.四
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,利用熱氣球探測器測量大樓AB的高度,從熱氣球P處測得大樓B的俯角為37°,大樓底部A的俯角為60°,此時熱氣球P離底面的高度為120m.試求大樓AB的高度(結(jié)果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點E,連接AE,BE,DE,過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+.其中正確結(jié)論的序號是( 。
A. ①②③ B. ①②④ C. ②③④ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD 中,對角線 AC 與 BD 相交于點 O ,點 E , F 分別為 OB , OD 的中點,延長 AE 至 G ,使 EG =AE ,連接 CG .
(1)求證: △ABE≌△CDF ;
(2)當(dāng) AB 與 AC 滿足什么數(shù)量關(guān)系時,四邊形 EGCF 是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=10,AD=16,∠A=60°,P是射線AD上一點,連接PB,沿PB將△APB折疊,得到△A′PB.
(1)如圖2所示,當(dāng)PA′⊥BC時,求線段PA的長度.
(2)當(dāng)∠DPA′=10°時,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)市委和市政府“綠色環(huán)保,節(jié)能減排”的號召,幸福商場用3300元購進(jìn)甲、乙兩種節(jié)能燈共計100只,很快售完.這兩種節(jié)能燈的進(jìn)價、售價如下表:
進(jìn)價(元/只) | 售價(元/只) | |
甲種節(jié)能燈 | 30 | 40 |
甲種節(jié)能燈 | 35 | 50 |
(1)求幸福商場甲、乙兩種節(jié)能燈各購進(jìn)了多少只?
(2)全部售完100只節(jié)能燈后,商場共計獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,LA,LB分別表示A步行與B騎車在同一路上行駛的路程y(千米)與時間x(小時)的關(guān)系.根據(jù)圖象,回答下列問題:
(1)B出發(fā)時與A相距 千米.
(2)B騎車一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時間是 小時.
(3)B出發(fā)后 小時與A相遇.
(4)求出A行走的路程y與時間x的函數(shù)關(guān)系式.(寫出過程)
(5)若B的自行車不發(fā)生故障,保持出發(fā)時的速度勻速行駛,A,B肯定會提前相遇.在圖中畫出這種假設(shè)情況下B騎車行駛過程中路程y與時間x的函數(shù)圖象,在圖中標(biāo)出這個相遇點P,并回答相遇點P離B的出發(fā)點O相距多少千米.(寫出過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com