【題目】 根據(jù)題意,完成推理填空:如圖,AB∥CD,∠1=∠2,試說(shuō)明∠B=∠D.
解:∵∠1=∠2(已知)
∴ (內(nèi)錯(cuò)角相等,兩直線平行)
∴∠BAD+∠B=180°(兩直線平行,同旁?xún)?nèi)角互補(bǔ))
∵AB∥CD
∴ + =180°,
∴∠B=∠D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAE+∠AED=180°,∠1=∠2,那么∠F=∠G嗎?為什么?
解:因?yàn)椤?/span>BAE+∠AED=180°( 已知)
所以AB∥CD________
所以∠BAE=∠AEC________
因?yàn)椤?/span>1=∠2( 已知)
所以∠BAE—∠1=∠AEC—∠2(等式性質(zhì))
即∠3=∠4
所以AF∥EG________,
所以∠F=∠G________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B>90°,CD為∠ACB的角平分線,在AC邊上取點(diǎn)E,使DE=DB,且∠AED>90°.若∠A=α,∠ACB=β,則( 。
A.∠AED=180°﹣α﹣βB.∠AED=180°﹣α﹣β
C.∠AED=90°﹣α+βD.∠AED=90°+α+β
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在△ABC中,∠A<90°,P是BC邊上的一點(diǎn),P1,P2是點(diǎn)P關(guān)于AB、AC的對(duì)稱(chēng)點(diǎn),連結(jié)P1P2,分別交AB、AC于點(diǎn)D、E.
(1)若∠A=52°,求∠DPE的度數(shù);
(2)如圖2,在△ABC中,若∠BAC=90°,用三角板作出點(diǎn)P關(guān)于AB、AC的對(duì)稱(chēng)點(diǎn)P1、P2,(不寫(xiě)作法,保留作圖痕跡),試判斷點(diǎn)P1,P2與點(diǎn)A是否在同一直線上,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究函數(shù)y=x+(x>0)與y=x+(x>0,a>0)的相關(guān)性質(zhì).
(1)小聰同學(xué)對(duì)函數(shù)y=x+(x>0)進(jìn)行了如下列表、描點(diǎn),請(qǐng)你幫他完成連線的步驟;觀察圖象可得它的最小值為 ,它的另一條性質(zhì)為 ;
x | … | 1 | 2 | 3 | … | |||||
y | … | 2 | … |
(2)請(qǐng)用配方法求函數(shù)y=x+(x>0)的最小值;
(3)猜想函數(shù)y=x+(x>0,a>0)的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:在平面直角坐標(biāo)系中,若兩點(diǎn)P、Q的坐標(biāo)分別是P(x1,y1)、
Q(x2,y2),則P、Q這兩點(diǎn)間的距離為|PQ|=.如P(1,2),Q(3,4),則|PQ|==2.
對(duì)于某種幾何圖形給出如下定義:符合一定條件的動(dòng)點(diǎn)形成的圖形,叫做符合這個(gè)條件的點(diǎn)的軌跡.如平面內(nèi)到線段兩個(gè)端點(diǎn)距離相等的點(diǎn)的軌跡是這條線段的垂直平分線.
解決問(wèn)題:如圖,已知在平面直角坐標(biāo)系xOy中,直線y=kx+交y軸于點(diǎn)A,點(diǎn)A關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)B,過(guò)點(diǎn)B作直線l平行于x軸.
(1)到點(diǎn)A的距離等于線段AB長(zhǎng)度的點(diǎn)的軌跡是 ;
(2)若動(dòng)點(diǎn)C(x,y)滿足到直線l的距離等于線段CA的長(zhǎng)度,求動(dòng)點(diǎn)C軌跡的函數(shù)表達(dá)式;
問(wèn)題拓展:(3)若(2)中的動(dòng)點(diǎn)C的軌跡與直線y=kx+交于E、F兩點(diǎn),分別過(guò)E、F作直線l的垂線,垂足分別是M、N,求證:①EF是△AMN外接圓的切線;②為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 在△DAE中, ∠DAE=40°, B、C兩點(diǎn)在直線DE上,且∠BAE=∠BEA,∠CAD=∠CDA,則∠BAC的大小是( 。
A.100°B.90°C.80°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點(diǎn)D,則①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上,以上結(jié)論中,正確的是
A. 只有①B. 只有②
C. 只有①和②D. ①②與③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩組同學(xué)進(jìn)行一分鐘引體向上測(cè)試,評(píng)分標(biāo)準(zhǔn)規(guī)定,做6個(gè)以上含6個(gè)為合格,做9個(gè)以上含9個(gè)為優(yōu)秀,兩組同學(xué)的測(cè)試成績(jī)?nèi)缦卤恚?/span>
成績(jī)個(gè) | 4 | 5 | 6 | 7 | 8 | 9 |
甲組人 | 1 | 2 | 5 | 2 | 1 | 4 |
乙組人 | 1 | 1 | 4 | 5 | 2 | 2 |
現(xiàn)將兩組同學(xué)的測(cè)試成績(jī)繪制成如下不完整的統(tǒng)計(jì)圖表:
統(tǒng)計(jì)量 | 平均數(shù)個(gè) | 中位數(shù) | 眾數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
甲組 | a | 6 | 6 | |||
乙組 | b | 7 |
將條形統(tǒng)計(jì)圖補(bǔ)充完整;
統(tǒng)計(jì)表中的______,______;
人說(shuō)甲組的優(yōu)秀率高于乙組優(yōu)秀率,所以甲組成績(jī)比乙組成績(jī)好,但也有人說(shuō)乙組成績(jī)比甲組成績(jī)好,請(qǐng)你給出兩條支持乙組成績(jī)好的理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com