【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的的網(wǎng)格中,給出了以格點(diǎn)(網(wǎng)格線的交點(diǎn))為端點(diǎn)的線段AB.

1)將線段AB向上平移5個(gè)單位長(zhǎng)度,得到線段,畫出線段;連接,并直接判斷四邊形的形狀;

2)以點(diǎn)B為旋轉(zhuǎn)中心,將線段AB順時(shí)針旋轉(zhuǎn)得到線段BC,畫出線段BC,并直接寫出的長(zhǎng).

【答案】1)圖見解析,四邊形是菱形;(2)見解析,.

【解析】

1)先根據(jù)勾股定理求出AB的長(zhǎng),再根據(jù)題意和平移的性質(zhì)即得四邊形四邊的關(guān)系,進(jìn)而作出判斷;

2)根據(jù)題意即可畫出旋轉(zhuǎn)后的圖形,直接利用弧長(zhǎng)公式計(jì)算即可.

解:(1)線段如圖所示,四邊形是菱形;

理由如下:由勾股定理得,由平移的性質(zhì)得:A1B1=AB=5,

又因?yàn)?/span>AA1=BB1=5,所以AB=BB1=B1A1=A1A,所以四邊形是菱形;

2)線段BC如圖所示:的長(zhǎng)=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,∠BAC60°,AB6,將ABC繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)60°得到ABC,求線段BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線C1y=﹣(x+m2+m2m0),拋物線C2y=(xn2+n2n0),稱拋物線C1,C2互為派對(duì)拋物線,例如拋物線C1y=﹣(x+12+1與拋物線C2y=(x2+2是派對(duì)拋物線,已知派對(duì)拋物線C1C2的頂點(diǎn)分別為A,B,拋物線C1的對(duì)稱軸交拋物線C2C,拋物線C2的對(duì)稱軸交拋物線C1D

1)已知拋物線①y=﹣x22x,②y=(x32+3,③y=(x2+2④yx2x+,則拋物線①②③④中互為派對(duì)拋物線的是   (請(qǐng)?jiān)跈M線上填寫拋物線的數(shù)字序號(hào));

2)如圖1,當(dāng)m1,n2時(shí),證明ACBD

3)如圖2,連接ABCD交于點(diǎn)F,延長(zhǎng)BAx軸的負(fù)半軸于點(diǎn)E,記BDx軸于G,CDx軸于點(diǎn)H,∠BEO=∠BDC

求證:四邊形ACBD是菱形;

若已知拋物線C2y=(x22+4,請(qǐng)求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個(gè)交點(diǎn)A、B,與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D.

(1)求拋物線的解析式;

(2)畫出拋物線的圖象;

(3)x軸上是否存在點(diǎn)N使△ADN為直角三角形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,直徑DEAB于點(diǎn)F,交BC于點(diǎn) MDE的延長(zhǎng)線與AC的延長(zhǎng)線交于點(diǎn)N,連接AM

1)求證:AMBM

2)若AMBM,DE8,∠N15°,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)Px軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作P,當(dāng)P與直線AB相切時(shí),點(diǎn)P的坐標(biāo)是______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線x軸于AC兩點(diǎn),交y軸于點(diǎn)B,且OB=2CO.

(1)求二次函數(shù)解析式;

(2)在二次函數(shù)圖象位于x軸上方部分有兩個(gè)動(dòng)點(diǎn)MN,且點(diǎn)N在點(diǎn)M的左側(cè),過M、Nx軸的垂線交x軸于點(diǎn)GH兩點(diǎn),當(dāng)四邊形MNHG為矩形時(shí),求該矩形周長(zhǎng)的最大值;

(3) 拋物線對(duì)稱軸上是否存在點(diǎn)P,使得△ABP為直角三角形?若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線、兩點(diǎn),點(diǎn)、關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)軸,交軸于點(diǎn).

1)求拋物線的解析式;

2)直接寫出點(diǎn)坐標(biāo),并求的面積;

3)點(diǎn)為拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)面積為6時(shí),求出點(diǎn)坐標(biāo);

4)若點(diǎn)在直線上運(yùn)動(dòng),點(diǎn)軸上運(yùn)動(dòng),當(dāng)以、為頂點(diǎn)的三角形為等腰直角三角形時(shí),直接寫出此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在于點(diǎn),于點(diǎn),邊的中點(diǎn),連接,則下列結(jié)論:①,②,③為等邊三角形,④當(dāng)時(shí),.請(qǐng)將正確結(jié)論的序號(hào)填在橫線上__.

查看答案和解析>>

同步練習(xí)冊(cè)答案