【題目】如圖,已知:拋物線x軸于A,C兩點,交y軸于點B,且OB=2CO.

(1)求二次函數(shù)解析式;

(2)在二次函數(shù)圖象位于x軸上方部分有兩個動點M、N,且點N在點M的左側(cè),過M、Nx軸的垂線交x軸于點G、H兩點,當(dāng)四邊形MNHG為矩形時,求該矩形周長的最大值;

(3) 拋物線對稱軸上是否存在點P,使得△ABP為直角三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

【答案】1y;(2;(3)(1,-3)或(1)或(1,1+)或(11-

【解析】

1)利用待定系數(shù)法求出A、BC的坐標(biāo),然后把B點坐標(biāo)代入,求出a 的值,并化簡二次函數(shù)式即可;

2)設(shè)點M的坐標(biāo)為(m),則點N的坐標(biāo)為(2-m),可得 GM=,利用矩形MNHG的周長=2MN+2GM,化簡可得,即當(dāng)時,C有最大值,最大值為

3)分三種情況討論:①點PAB的下方,②點PAB的上方,③以AB為直徑作圓與對稱軸交,分別討論得出結(jié)果即可.

1)對于拋物線y=ax+1)(x-3),

y=0,得到ax+1)(x-3=0,

解得x=-13,

C-1,0),A3,0),

OC=1

OB=2OC=2,

B0,2),

B0,2)代入y=ax+1)(x-3)中得:2=-3aa=-

∴二次函數(shù)解析式為

2)設(shè)點M的坐標(biāo)為(m,),

則點N的坐標(biāo)為(2-m,),

, GM=

矩形MNHG的周長 C=2MN+2GM

=22m-2+2

=

=

∴當(dāng)時,C有最大值,最大值為,

3)∵A30),B02),
OA=3,OB=2
由對稱得:拋物線的對稱軸是:x=1,
AE=3-1=2,
設(shè)拋物線的對稱軸與x軸相交于點E,當(dāng)△ABP為直角三角形時,存在以下三種情況:

①如圖1,

當(dāng)∠BAP=90°時,點PAB的下方,
∵∠PAE+BAO=BAO+ABO=90°,
∴∠PAE=ABO,
∵∠AOB=AEP,
∴△ABO∽△PAE,
,即,

PE=3,
P1,-3);
②如圖2,

當(dāng)∠PBA=90°時,點PAB的上方,過PPFy軸于F,
同理得:△PFB∽△BOA

,即

,

P1,);

③如圖3,

AB為直徑作圓與對稱軸交于P1、P2,則∠AP1B=AP2B=90°,
設(shè)P11y),
AB2=22+32=13,
由勾股定理得:AB2=P1B2+P1A2,
,
解得:,

P11+)或(1,1-

綜上所述,點P的坐標(biāo)為(1,-3)或(1,)或(11+)或(1,1-

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O中,直徑AB與弦CD相交于點P,∠CAB=62°,APD=86°.

(1)求∠B的大。

(2)已知AD=6,求圓心OBD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=CB,AC=10,SABC=60,E為AB上一動點,連結(jié)CE,過A作AFCE于F,連結(jié)BF,則BF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的的網(wǎng)格中,給出了以格點(網(wǎng)格線的交點)為端點的線段AB.

1)將線段AB向上平移5個單位長度,得到線段,畫出線段;連接,并直接判斷四邊形的形狀;

2)以點B為旋轉(zhuǎn)中心,將線段AB順時針旋轉(zhuǎn)得到線段BC,畫出線段BC,并直接寫出的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的頂點A,D在直線l上,BAD=60°,以點A為旋轉(zhuǎn)中心將菱形ABCD順時針旋轉(zhuǎn)αα30°),得到菱形AB′C′D′B′C′交對角線AC于點M,C′D′交直線l于點N,連接MN,當(dāng)MNB′D′ 時,解答下列問題:

(1)求證:△AB′MAD′N;

(2)α的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實踐活動中,小林在南濱河路上的A,B兩點處,利用測角儀分別對北岸的一觀景亭D進(jìn)行了測量.如圖,測得∠DAC=45°,DBC=65°.AB=132米,求觀景亭D到南濱河路AC的距離(結(jié)果精確到1米,參考數(shù)據(jù):sin65°0.91,cos65°0.42,tan65°2.14).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某禮品店生產(chǎn)的禮品盒分為六個檔次,第一檔(最低檔次)的產(chǎn)品每天生產(chǎn)76件,每件利潤10元,調(diào)查表明:生產(chǎn)提高一個檔次的禮品盒,每件利潤增加2.

1)若生產(chǎn)的某批禮品盒每件利潤為14元,問生產(chǎn)的是第幾檔次的產(chǎn)品?

2)由于生產(chǎn)工序不同,禮品盒每提升一個檔次,一天會少生產(chǎn)4件,若生產(chǎn)的某檔次產(chǎn)品一天的利潤為1080元,問生產(chǎn)的是第幾檔次的產(chǎn)品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次夏令營活動中,小亮從位于A點的營地出發(fā),沿北偏東60°方向走了5km到達(dá)B地,然后再沿北偏西30°方向走了若干千米到達(dá)C地,測得A地在C地南偏西30°方向,則A、C兩地的距離為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)如圖,一次函數(shù)的圖象與反比例函數(shù)為常數(shù),且)的圖象交于A1,a)、B兩點.

1)求反比例函數(shù)的表達(dá)式及點B的坐標(biāo);

2)在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標(biāo)及△PAB的面積.

查看答案和解析>>

同步練習(xí)冊答案