【題目】如圖,點A、B、CP在⊙O上,CDOA,CEOB,垂足分別為D,E,DCE=40°,則∠P的度數(shù)為( 。

A.70°B.60°C.40°D.35°

【答案】A

【解析】

題目所求是∠P,觀察分析圖可知∠AOB∠P分別是弧AB所對的圓心角和圓周角;

根據(jù)圓周角定理有:一條弧所對的圓心角是圓周角的兩倍;

由于∠CDO∠CEO都為90°,∠DCE已知,則易求∠DOE也就是∠AOB的度數(shù);

求出∠AOB的度數(shù)后,由圓周角定理就容易求出∠P的度數(shù)了.

∵CD⊥OA,CE⊥OB,

∴∠CDO=∠CEO=90°.

∵∠DCE=40°,

∴∠AOB=∠DOE=360°-90°-90°-40°=140°.

由圓周角定理可知:∠P=∠AOB=70°.

∴選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】受疫情的影響,很多農(nóng)產(chǎn)品滯銷,各大電商發(fā)起了“愛心助農(nóng)”活動,幫助農(nóng)戶進(jìn)行農(nóng)產(chǎn)品銷售.已知某種橘子的成本為4/千克,經(jīng)過市場調(diào)查發(fā)現(xiàn),一天內(nèi)橘子的銷售量y(千克)與銷售單價x(/千克)(4x10)的函數(shù)關(guān)系如下圖所示:

1)當(dāng)4x8時,求yx的函數(shù)解析式;

2)當(dāng)4x8時,要使一天內(nèi)獲得的利潤為1200元,單價應(yīng)定為多少?

3)求橘子的單價定為多少時,一天內(nèi)獲得的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個函數(shù)當(dāng)自變量在不同范圍內(nèi)取值時,函數(shù)表達(dá)式不同,我們稱這樣的函數(shù)為分段函數(shù).下面我們參照學(xué)習(xí)函數(shù)的過程與方法,探究分段函數(shù)的圖象與性質(zhì).列表:

x

0

1

2

3

y

1

2

1

0

1

2

描點:在平面直角坐標(biāo)系中,以自變量x的取值為橫坐標(biāo),以相應(yīng)的函數(shù)值y為縱坐標(biāo),描出相應(yīng)的點,如圖所示.

1)如圖,在平面直角坐標(biāo)系中,觀察描出的這些點的分布,作出函數(shù)圖象;

2)研究函數(shù)并結(jié)合圖象與表格,回答下列問題:

①點,,在函數(shù)圖象上,      ;(填“>”,“=”或“<”)

②當(dāng)函數(shù)值時,求自變量x的值;

③在直線的右側(cè)的函數(shù)圖象上有兩個不同的點,,且,求的值;

④若直線與函數(shù)圖象有三個不同的交點,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校舉行圖書節(jié)義賣活動,將所售款項捐給其他貧困學(xué)生.在這次義賣活動中,某班級售書情況如下圖:

下列說法正確的是(

A.該班級所售圖書的總數(shù)收入是226

B.在該班級所售圖書價格組成的一組數(shù)據(jù)中,中位數(shù)是4

C.在該班級所售圖書價格組成的一組數(shù)據(jù)中,眾數(shù)是15

D.在該班級所售圖書價格組成的一組數(shù)據(jù)中,方差是2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店準(zhǔn)備購進(jìn)兩種商品,種商品毎件的進(jìn)價比種商品每件的進(jìn)價多20元,用3000元購進(jìn)種商品和用1800元購進(jìn)種商品的數(shù)量相同.商店將種商品每件的售價定為80元,種商品每件的售價定為45元.

1種商品每件的進(jìn)價和種商品每件的進(jìn)價各是多少元?

2)商店計劃用不超過1560元的資金購進(jìn)兩種商品共40件,其中種商品的數(shù)量不低于種商品數(shù)量的一半,該商店有幾種進(jìn)貨方案?

3)端午節(jié)期間,商店開展優(yōu)惠促銷活動,決定對每件種商品售價優(yōu)惠)元,種商品售價不變,在(2)條件下,請設(shè)計出銷售這40件商品獲得總利潤最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車同時從A地出發(fā),勻速開往B地,甲車行駛到B地后立即沿原路線以原速度返回A地,到達(dá)A地后停止運動:當(dāng)甲車到達(dá)A地時,乙車恰好到達(dá)B地,并停止運動.已知甲車的速度為150km/h,設(shè)甲車出發(fā)xh后,甲、乙兩車之間的距離為ykm,圖中的折線OMNQ表示了整個運動過程中yx之間的函數(shù)關(guān)系.

1A、B兩地的距離是   km,乙車的速度是   km/h

2)指出點M的實際意義,并求線段MN所表示的yx之間的函數(shù)表達(dá)式;

3)當(dāng)兩車相距50km時,直接寫出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在△ABC中,CE、CF分別平分∠ACB與它的鄰補角∠ACD,AECEE,AFCFF,直線EF分別交AB、ACMN

1)求證:四邊形AECF為矩形;

2)試猜想MNBC的關(guān)系,并證明你的猜想;

3)如果四邊形AECF是菱形,試判斷△ABC的形狀,直接寫出結(jié)果,不用說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,對稱軸為.下列結(jié)論中,正確的是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)市場調(diào)查,天貓超市在銷售一種進(jìn)價為每件40元的護眼臺燈中發(fā)現(xiàn):每月銷售量(件)與銷售單價(元)之間的函數(shù)關(guān)系如圖所示.

1)當(dāng)銷售單價定為50元時,求每月的銷售件數(shù);

2)設(shè)每月獲得利潤為(元),求每月獲得利潤(元)關(guān)于銷售單價(元)的函數(shù)解析式;

3)由于市場競爭激烈,這種護眼燈的銷售單價不得高于75元,如果要每月獲得的利潤不低于8000元,那么每月的成本最少需要多少元?(成本=進(jìn)價×銷售量).

查看答案和解析>>

同步練習(xí)冊答案