【題目】如圖所示,已知ACBD,EA,EB分別平分CAB和DBA,CD過(guò)E點(diǎn).求證:AB=AC+BD.

【答案】證明見(jiàn)試題解析.

【解析】

試題分析:在AB上取一點(diǎn)F,使AF=AC,連結(jié)EF,就可以得出ACE≌△AFE,就有C=AFE.由平行線的性質(zhì)就有C+D=180°,由AFE+EFB=180°得出EFB=D,在證明BEF≌△BED就可以得出BF=BD,進(jìn)而就可以得出結(jié)論.

試題解析:證明:在AB上取一點(diǎn)F,使AF=AC,連結(jié)EF.

EA、EB分別平分CAB和DBA,∴∠CAE=FAE,EBF=EBD.ACBD,∴∠C+D=180°.在ACE和AFE中,AC=AF,CAE=FAE,AE=AE,∴△ACE≌△AFE(SAS),∴∠C=AFE.∵∠AFE+EFB=180°,∴∠EFB=D.在BEF和BED中,∵∠EFB=D,EBF=EBD,BE=BE,∴△BEF≌△BED(AAS),BF=BD.AB=AF+BF,AB=AC+BD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)邊長(zhǎng)為1的等邊△ABC的邊AB上一點(diǎn)P,作PE⊥AC于E,Q為BC延長(zhǎng)線上一點(diǎn),當(dāng)PA=CQ時(shí),連PQ交AC邊于D,則DE的長(zhǎng)為( )

A. B. C. D. 不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在梯形ABCD中,ABCD,D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.

(1)用含x的代數(shù)式表示線段CF的長(zhǎng);

(2)如果把CAE的周長(zhǎng)記作CCAE,BAF的周長(zhǎng)記作CBAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出它的定義域;

(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無(wú)法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將長(zhǎng)方形紙片ABCD的一角沿AE折疊,使點(diǎn)D落在點(diǎn)D′處,得到如圖所示的圖形,若∠CED′=56°,則∠D′AB=_____度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,BAC=90°,BD是中線,AFBD,F(xiàn)為垂足,過(guò)點(diǎn)CAB的平行線交AF的延長(zhǎng)線于點(diǎn)E.

求證:(1)ABD=FAD;(2)AB=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把下列各數(shù)填入相應(yīng)的大括號(hào)內(nèi).

3,-,,0.5,2π,3.14159265,-,1.103030030003…(

鄰兩個(gè)3之間依次多1個(gè)0).

(1) 有理數(shù)集合:{ };

(2) 無(wú)理數(shù)集合:{ };

(3) 實(shí)數(shù)集合:{ };

(4) 負(fù)實(shí)數(shù)集合:{ }.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=2BC,以點(diǎn)B為圓心,BC長(zhǎng)為半徑作弧,與AC交于點(diǎn)D.若AC=4,則線段CD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】⊙O的半徑為17cm,AB,CD是⊙O的兩條弦,AB∥CD,AB=30cm,CD=16cm.求AB和CD之間的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案