【題目】“元旦大酬賓!”,某商場設計的促銷活動如下:在一個不透明的箱子里放有3張相同的卡片,卡片上分別標有“10元”、“20元”和“30元”的字樣,規(guī)定:在本商場同一日內(nèi),顧客每消費滿300元,就可以在箱子里摸出一張卡片,記下錢數(shù)后放回,再從中摸出一張卡片.商場根據(jù)兩張卡片所標金額的和返還相等價格的購物券,購物券可以在本商場消費.某顧客剛好消費300元.
(1)該顧客最多可得到 元購物券;
(2)請你用畫樹狀圖或列表的方法,求出該顧客所獲得購物券的金額不低于40元的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,O為BD中點,以BC為邊向正方形內(nèi)作等邊△BCE,連接AE并延長交CD于F,連接BD分別交CE、AF于G、H,下列結論:①;②;③;④;⑤:,其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市中學生參加“科普知識”競賽成績的情況,隨機抽查了部分參賽學生的成績,作出如圖所示的統(tǒng)計圖和統(tǒng)計表.請根據(jù)圖表信息,解答下列問題:
(1)在表中:m= ,n= ;在圖中補全頻數(shù)分布直方圖;
(2)小明的成績是所有被抽查學生成績的中位數(shù),據(jù)此推斷他的成績在 組;
(3)4個小組每組推薦1人,然后從4人中隨機抽取2人參加頒獎典禮,恰好抽中A、C兩組學生的概率是多少?請用列表法或畫樹狀圖法說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知在Rt△ABC中,∠C=90°,AC=BC=,直線L過AB中點O,過點A、C分別向直線L作垂線,垂足分別為E、F.若CF=1,則EF=__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y= -x2+bx+c與x軸負半軸交于A點,與x軸正半軸交于B點,與y軸正半軸交于C點,CO=BO,AB=14.
(1)求拋物線的解析式;
(2)如圖2, 點M、N在第一象限內(nèi)拋物線上,M在N點下方,連CM、CN,∠OCN+∠OCM=180°, 設M點橫坐標為m,N點橫坐標為n,求m與n的函數(shù)關系式(n是自變量);
(3)如圖3, 在(2)條件下,連AN交CO于E,過M作MF⊥AB于F,連BM、EF,若∠AFE=2∠FMB=2β, 求N點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在△ABC中,∠C=90°,AC=15,BC=20,經(jīng)過點C的⊙O與△ABC的每條邊都相交.⊙O與AC邊的另一個公共點為D,與BC邊的另一個公共點為E,與AB邊的兩個公共點分別為F、G.設⊙O的半徑為r.
(操作感知)
(1)根據(jù)題意,僅用圓規(guī)在圖①中作出一個滿足條件的⊙O,并標明相關字母;
(初步探究)
(2)求證:CD2+CE2=4r2;
(3)當r=8時,則CD2+CE2+FG2的最大值為 ;
(深入研究)
(4)直接寫出滿足題意的r的取值范圍;對于范圍內(nèi)每一個確定的r的值,CD2+CE2+FG2都有最大值,每一個最大值對應的圓心O所形成的路徑長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某課外學習小組根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質進行了探究請補充完整以下探索過程:
(1)列表:
x | … | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | … |
y | … | m | 0 | -3 | -4 | -3 | 0 | -3 | -4 | n | 0 | … |
直接寫出________,________;
(2)根據(jù)上表中的數(shù)據(jù),在平面直角坐標系內(nèi)補全該函數(shù)的圖象,并結合圖象寫出該函數(shù)的兩條性質:
性質1______________________________________________________
性質2_______________________________________________________
(3)若方程有四個不同的實數(shù)根,請根據(jù)函數(shù)圖象,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線y=x與雙曲線y=(k≠0)的一個交點為P(,n).將直線向上平移b(0>0)個單位長度后,與x軸,y軸分別交于點A,點B,與雙曲線的一個交點為Q.若AQ=3AB,則b=____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點O是對角線AC,BD的交點,點E在BC邊上(點E不和BC的端點重合),且BE=BC,連接AE交OB于點F,過點B作AE的垂線BG交OC于點G,連接GE.
(1)求證:OF=OG;
(2)用含的代數(shù)式表示tan∠OBG的值;
(3)如圖2,當∠GEC=90°時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com