【題目】如圖,一艘油輪在海中航行,在A點看到小島BA的北偏東25°方向距離60海里處,油輪沿北偏東70°方向航行到C處,看到小島BC的北偏西50°方向,則油輪從A航行到C處的距離是( )海里.(結(jié)果保留整數(shù))(參考數(shù)據(jù):≈1.41,≈1.74≈2.45

A.66.8B.67C.115.8D.116

【答案】B

【解析】

BBDACD,求出∠BAC和∠BCA,解直角三角形求出AD、BDCD,即可求出答案.

解:過BBDACD,則∠BDA=BDC=90°

由題意知:∠BAC=70°-25°=45°,

AMCN,

∴∠MAC+NCA=180°,

∴∠NCA=180°-70°=110°

∴∠BCA=110°-50°=60°,

AB=60海里,∠BAD=45°

AD=AB×cos45°=海里,BD=AD=海里,CD=海里,

AC=AD+CD=67海里;

故選擇:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,AB=DCAD=3cm,BC=7cm,∠B=60°,PBC邊上一點(不與B,C重合),連接AP,過P點作PEDCE,使得∠APE=B

(1)求證:△ABP∽△PCE;

(2)求AB的長;

(3)在邊BC上是否存在一點P,使得DEEC=5:3?如果存在,求BP的長;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+2x+3x軸交于點A,B(A在點B的左邊),與y軸交于點C.

(1)如圖1,點P,Q都在直線BC上方的拋物線上,且點P的橫坐標(biāo)比點Q的橫坐標(biāo)小1,直線PQx軸交于點D,過點P,Q作直線BC的垂線,垂足分別為點EF.當(dāng)PE+QF的值最大時,將四邊形PEFQ沿射線PQ方向平移,記平移過程中的四邊形PEFQP1E1F1Q1,連接CP1,P1F1,求CP1+P1F1+Q1D的最小值,并求出對應(yīng)的點Q1的坐標(biāo).

(2)如圖2,對于滿足(1)中條件的點Q1,將線段AQ1繞原點O順時針旋轉(zhuǎn)90°,得線段A1Q2,點M是拋物線對稱軸上一點,點N是坐標(biāo)平面內(nèi)一點,點N1是點N關(guān)于直線A1Q2的對稱點,若以點A1Q1,M,N1為頂點的四邊形是一個矩形,請直接寫出所有符合條件的點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長城汽車銷售公司5月份銷售某種型號汽車,當(dāng)月該型號汽車的進(jìn)價為30萬元/輛,若當(dāng)月銷售量超過5輛時,每多售出1輛,所有售出的汽車進(jìn)價均降低0.1萬元/輛.根據(jù)市場調(diào)查,月銷售量不會突破30臺.

1)設(shè)當(dāng)月該型號汽車的銷售量為x輛(x≤30,且x為正整數(shù)),實際進(jìn)價為y萬元/輛,求yx的函數(shù)關(guān)系式;

2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當(dāng)月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進(jìn)價)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DAAB=12.

(1)求∠CDB的度數(shù);

(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校九年級數(shù)學(xué)興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數(shù)據(jù):如圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)1.2米.

1)試求該校地下停車場的高度AC;

2)求CD的高度,一輛高為6米的車能否通過該地下停車場(1.73,結(jié)果精確到0.1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科技公司推出一款新的電子產(chǎn)品,該產(chǎn)品有三種型號.通過市場調(diào)研后,按三種型號受消費者喜愛的程度分別對A型、B型、C型產(chǎn)品在成本的基礎(chǔ)上分別加價20%,30%,45%出售(三種型號的成本相同).經(jīng)過一個季度的經(jīng)營后,發(fā)現(xiàn)C型產(chǎn)品的銷量占總銷量的,且三種型號的總利潤率為35%.第二個季度,公司決定對A型產(chǎn)品進(jìn)行升級,升級后A產(chǎn)品的成本提高了25%,銷量提高了20%B、C產(chǎn)品的銷量和成本均不變,且三種產(chǎn)品在二季度成本基礎(chǔ)上分別加價20%,30%,45%出售,則第二個季度的總利潤率為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標(biāo)為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.

其中正確結(jié)論的個數(shù)是(  )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司投資新建了一商場,共有商鋪30.據(jù)預(yù)測,當(dāng)每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000,少租出商鋪1.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000.

1)當(dāng)每間商鋪的年租金定為13萬元時,能租出多少間?

2)當(dāng)每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?

查看答案和解析>>

同步練習(xí)冊答案