如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線(xiàn).
(2)若AD=數(shù)學(xué)公式,AE=數(shù)學(xué)公式,求EC的長(zhǎng).

(1)證明:取BD中點(diǎn)O,連接OE,
∵BE平分∠ABC,
∴∠CBE=∠EBO,
∵OE=OB,
∴∠OEB=∠EBO,
∴∠OEB=∠CBE,
∴OE∥BC,
∵BC⊥AC,
∴OE⊥AC,
∵OE為半徑,
∴AC是△BDE的外接圓的切線(xiàn);

(2)解:設(shè)⊙O半徑為R,
則在Rt△AOE中,由勾股定理得:OA2=AE2+OE2
即(R+22=R2+(62,
解得:R=2,
∴OA=2OE,
∴∠A=30°,∠AOE=60°,
∴∠CBE=∠OBE=30°,
∴EC=BE=×R=××2=3
分析:(1)取BD中點(diǎn)O,連接OE,求出∠CBE=∠EBO,∠OEB=∠EBO,推出∠OEB=∠CBE,推出OE∥BC,求出OE⊥AC,根據(jù)切線(xiàn)的判定推出即可;
(2)設(shè)⊙O半徑為R,在Rt△AOE中,由勾股定理得出(R+22=R2+(62,求出R=2,求出∠A=30°,∠CBE=∠OBE=30°,推出EC=BE=×R,代入求出即可.
點(diǎn)評(píng):本題考查了切線(xiàn)的判定,平行線(xiàn)的性質(zhì)和判定,勾股定理,含30度角的直角三角形的性質(zhì)的應(yīng)用,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理和計(jì)算的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線(xiàn)AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線(xiàn);
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線(xiàn),它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線(xiàn)AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線(xiàn)DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線(xiàn)段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線(xiàn)段DE上運(yùn)動(dòng)時(shí),線(xiàn)段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案