C
分析:首先連接CF,由等腰直角三角形的性質(zhì)可得:∴∠A=∠B=45°,CF⊥AB,∠ACF=
∠ACB=45°,CF=AF=BF=
AB,則證得∠DCF=∠B,∠DFC=∠EFB,然后可證得:△DCF≌△EBF,由全等三角形的性質(zhì)可得CD=BE,DF=EF,也可證得S
四邊形CDFE=
S
△ABC,問題得解.
解答:
解:連接CF,
∵AC=BC,∠ACB=90°,點F是AB中點,
∴∠A=∠B=45°,CF⊥AB,∠ACF=
∠ACB=45°,CF=AF=BF=
AB,
∴∠DCF=∠B=45°,
∵∠DFE=90°,
∴∠DCF+∠CFE=∠CFE+∠EFB=90°,
∴∠DFC=∠EFB,
∴△DCF≌△EBF,
∴CD=BE,故①正確;
∴DF=EF,
∴△DFE是等腰直角三角形,故③正確;
∴S
△DCF=S
△BEF,
∴S
四邊形CDFE=S
△CDF+S
△CEF=S
△EBF+S
△CEF=S
△CBF=
S
△ABC,故④正確.
若EF⊥BC時,則可得:四邊形CDFE是矩形,
∵DF=EF,
∴四邊形CDFE是正方形,故②錯誤.
∴結(jié)論中始終正確的有①③④.
故選C.
點評:此題考查了全等三角形的判定與性質(zhì),等腰直角三角形的性質(zhì),正方形的判定等知識.題目綜合性很強,但難度不大,注意數(shù)形結(jié)合思想的應(yīng)用.