【題目】為保護環(huán)境,我市公交公司計劃購買A型和B型兩種環(huán)保節(jié)能公交車共10輛.若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元.
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預計在某線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1200萬元,且確保這10輛公交車在該線路的年均載客總和不少于680萬人次,則該公司有哪幾種購車方案?
(3)在(2)的條件下,哪種購車方案總費用最少?最少總費用是多少萬元?
【答案】(1)購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.
(2)三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;
(3)購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.
【解析】試題分析:(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,根據(jù)“A型公交車1輛,B型公交車2輛,共需400萬元;A型公交車2輛,B型公交車1輛,共需350萬元”列出方程組即可解決問題;(2)設(shè)購買A型公交車a輛,則B型公交車(10-a)輛,由“購買A型和B型公交車的總費用不超過1200萬元”和“10輛公交車在該線路的年均載客總和不少于680萬人次”列出不等式組探討得出答案即可;(3)分別計算出每一個方案的錢數(shù),比較即可.
試題解析:
(1)設(shè)購買A型公交車每輛需x萬元,購買B型公交車每輛需y萬元,由題意得
, 解得.
答:購買A型公交車每輛需100萬元,購買B型公交車每輛需150萬元.
(2)設(shè)購買A型公交車a輛,則B型公交車(10﹣a)輛,由題意得
,解得:6≤a≤8,所以a=6,7,8;
則(10﹣a)=4,3,2;
三種方案:①購買A型公交車6輛,則B型公交車4輛;②購買A型公交車7輛,則B型公交車3輛;③購買A型公交車8輛,則B型公交車2輛;
(3)①購買A型公交車6輛,則B型公交車4輛:100×6+150×4=1200萬元;
②購買A型公交車7輛,則B型公交車3輛:100×7+150×3=1150萬元;
③購買A型公交車8輛,則B型公交車2輛:100×8+150×2=1100萬元;故購買A型公交車8輛,B型公交車2輛費用最少,最少費用為1100萬元.
科目:初中數(shù)學 來源: 題型:
【題目】兩條直線相交所成的四個角分別滿足下列條件之一,其中不能判定這兩條直線垂直的條件是( )
A.兩對對頂角分別相等B.有一對對頂角互補
C.有一對鄰補角相等D.有三個角相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)不等式的基本性質(zhì),把下列不等式化成“x>a”或“x<a”的形式:
(1)4x>3x+5 (2)-2x<17
(3)0.3x<-0.9 (4)x<x-4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,BD⊥AC于點D,E為BC上一點,過E點作EF⊥AC,垂足為F,過點D作DH∥BC交AB于點H.
(1)請你補全圖形。
(2)求證:∠BDH=∠CEF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC 中,∠A=60°,∠ACB=40°,D為BC邊延長線上一點,BM平分∠ABC,E為射線BM上一點.
(1)如圖1,連接CE,
①若CE∥AB,求∠BEC的度數(shù);
②若CE平分∠ACD,求∠BEC的度數(shù).
(2)若直線CE垂直于△ABC的一邊,請直接寫出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用適當?shù)姆柋硎鞠铝嘘P(guān)系:
(l)a的2倍比a與3的和小; (2)y的一半與5的差是非負數(shù);
(3)x的3倍與1的和小于x的2倍與5的差.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市為創(chuàng)建省衛(wèi)生城市,有關(guān)部門決定利用現(xiàn)有的4200盆甲種花卉和3090盆乙種花卉,搭配A、B兩種園藝造型共60個,擺放于入城大道的兩側(cè),搭配每個造型所需花卉數(shù)量的情況下表所示,結(jié)合上述信息,解答下列問題:
造型花卉 | 甲 | 乙 |
A | 80 | 40 |
B | 50 | 70 |
(1)符合題意的搭配方案有幾種?
(2)如果搭配一個A種造型的成本為1000元,搭配一個B種造型的成本為1500元,試說明選用那種方案成本最低?最低成本為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】按要求解答下列各題:
(1)解不等式:3x-5<2(2+3x);
(2)解不等式:2x-3≤ (x+2);
(3)解不等式: <x-1,并將解集在數(shù)軸上表示出來.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com