【題目】已知點(diǎn)(3,5)在直線y=ax+b(a,b為常數(shù),且a≠0)上,則 的值為

【答案】﹣
【解析】解:∵點(diǎn)(3,5)在直線y=ax+b上,
∴5=3a+b,
∴b﹣5=﹣3a,
= =﹣
所以答案是:﹣
【考點(diǎn)精析】通過靈活運(yùn)用一次函數(shù)的性質(zhì)和一次函數(shù)的圖象和性質(zhì),掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減。灰淮魏瘮(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的一元二次方程x22m+3x+m2+3m+2=0

(1)已知x=2是方程的一個(gè)根,求m的值;

(2)以這個(gè)方程的兩個(gè)實(shí)數(shù)根作為△ABCABACABAC)的邊長(zhǎng),當(dāng)BC=時(shí),△ABC是等腰三角形,求此時(shí)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)“▲”、“●”、“■”分別表示三種不同的物體,現(xiàn)用天平秤兩次,情況如圖所示,那么▲、●、■這三種物體按質(zhì)量從大到小排列應(yīng)為(
A.■、●、▲
B.▲、■、●
C.■、▲、●
D.●、▲、■

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C是半圓O上的一點(diǎn),AC平分∠DAB,AD⊥CD,垂足為D,AD交⊙O于E,連接CE.
(1)判斷CD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若E是 的中點(diǎn),⊙O的半徑為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)C的坐標(biāo)為(0,﹣2),交x軸于A、B兩點(diǎn),其中A(﹣1,0),直線l:x=m(m>1)與x軸交于D.

(1)求二次函數(shù)的解析式和B的坐標(biāo);
(2)在直線l上找點(diǎn)P(P在第一象限),使得以P、D、B為頂點(diǎn)的三角形與以B、C、O為頂點(diǎn)的三角形相似,求點(diǎn)P的坐標(biāo)(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,在拋物線上是否存在第一象限內(nèi)的點(diǎn)Q,使△BPQ是以P為直角頂點(diǎn)的等腰直角三角形?如果存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于t的不等式組 ,恰有三個(gè)整數(shù)解,則關(guān)于x的一次函數(shù) 的圖象與反比例函數(shù) 的圖象的公共點(diǎn)的個(gè)數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某物體從P點(diǎn)運(yùn)動(dòng)到Q點(diǎn)所用時(shí)間為7秒,其運(yùn)動(dòng)速度v(米每秒)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系如圖所示.某學(xué)習(xí)小組經(jīng)過探究發(fā)現(xiàn):該物體前進(jìn)3秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積.由物理學(xué)知識(shí)還可知:該物體前t(3<t≤7)秒運(yùn)動(dòng)的路程在數(shù)值上等于矩形AODB的面積與梯形BDNM的面積之和. 根據(jù)以上信息,完成下列問題:

(1)當(dāng)3<t≤7時(shí),用含t的式子表示v;
(2)分別求該物體在0≤t≤3和3<t≤7時(shí),運(yùn)動(dòng)的路程s(米)關(guān)于時(shí)間t(秒)的函數(shù)關(guān)系式;并求該物體從P點(diǎn)運(yùn)動(dòng)到Q總路程的 時(shí)所用的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“雙十二”期間,A,B兩個(gè)超市開展促銷活動(dòng),活動(dòng)方式如下:

A超市:購(gòu)物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購(gòu)物金額打8

某學(xué)校計(jì)劃購(gòu)買某品牌的籃球做獎(jiǎng)品,該品牌的籃球在A,B兩個(gè)超市的標(biāo)價(jià)相同根據(jù)商場(chǎng)的活動(dòng)方式:

(1)若一次性付款4200元購(gòu)買這種籃球,則在B商場(chǎng)購(gòu)買的數(shù)量比在A商場(chǎng)購(gòu)買的數(shù)量多5個(gè)請(qǐng)求出這種籃球的標(biāo)價(jià)

(2)學(xué)校計(jì)劃購(gòu)買100個(gè)籃球,請(qǐng)你設(shè)計(jì)一個(gè)購(gòu)買方案,使所需的費(fèi)用最少.(直接寫出方案

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:分式和分?jǐn)?shù)有著很多的相似點(diǎn).如類比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則;等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù).類似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱為真分式;反之,稱為假分式.任何一個(gè)假分式都可以化成整式與真分式的和的形式,如:

(1)下列分式中,屬于真分式的是:________(填序號(hào));

(2)將假分式化成整式與真分式的和的形式: ________________;

(3)將假分式化成整式與真分式的和的形式: __________________.

查看答案和解析>>

同步練習(xí)冊(cè)答案