【題目】請(qǐng)閱讀某同學(xué)解下面分式方程的具體過程.
解方程:.
解:,①
,②
,③
∴.④
∴.
把代入原方程檢驗(yàn)知是原方程的解.
請(qǐng)你回答:
(1)上述解答正確嗎?如果不正確,從哪一步開始出現(xiàn)錯(cuò)誤?答:______.錯(cuò)誤的原因是______(若第一格回答“正確”的,此空不填).
(2)給出正確答案(不要求重新解答,只需把你認(rèn)為應(yīng)改正的進(jìn)行修改或加上即可).___________
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2011貴州安順,17,4分)已知:如圖,O為坐標(biāo)原點(diǎn),四邊形OABC為矩形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng),當(dāng)△ODP是腰長(zhǎng)為5的等腰三角形時(shí),則P點(diǎn)的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,點(diǎn)E在邊AD上(不與點(diǎn)A、D重合),∠CEB=45°,EB與對(duì)角線AC相交于點(diǎn)F,設(shè)DE=x.
(1)用含x的代數(shù)式表示線段CF的長(zhǎng);
(2)如果把△CAE的周長(zhǎng)記作C△CAE,△BAF的周長(zhǎng)記作C△BAF,設(shè)=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出它的定義域;
(3)當(dāng)∠ABE的正切值是時(shí),求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)斜邊長(zhǎng)為10cm的紅色三角形紙片,一個(gè)斜邊長(zhǎng)為6cm的藍(lán)色三角形紙片,一張黃色的正方形紙片,拼成一個(gè)直角三角形,則紅、藍(lán)兩張紙片的面積之和是( 。
A. 60cm2 B. 50cm2 C. 40cm2 D. 30cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一矩形紙片放在直角坐標(biāo)系中,為原點(diǎn),點(diǎn)在軸上,點(diǎn)在軸上,.
(1)如圖1,在上取一點(diǎn),將沿折疊,使點(diǎn)落在邊上的點(diǎn)處,求直線的解析式;
(2)如圖2,在邊上選取適當(dāng)?shù)狞c(diǎn),將沿折疊,使點(diǎn)落在邊上的點(diǎn)處,過作于點(diǎn),交于點(diǎn),連接,判斷四邊形的形狀,并說明理由;
(3)、在(2)的條件下,若點(diǎn)坐標(biāo),點(diǎn)在直線上,問坐標(biāo)軸上是否存在點(diǎn),使以為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫出表示的點(diǎn),請(qǐng)依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計(jì)算)嘗試滿足,使其中a,b都為正整數(shù).你取的正整數(shù)a=____,b=________;
第二步:(畫長(zhǎng)為的線段)以第一步中你所取的正整數(shù)a,b為兩條直角邊長(zhǎng)畫Rt△OEF,使O為原點(diǎn),點(diǎn)E落在數(shù)軸的正半軸上, ,則斜邊OF的長(zhǎng)即為.
請(qǐng)?jiān)谙旅娴臄?shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點(diǎn))在下面的數(shù)軸上畫出表示的點(diǎn)M,并描述第三步的畫圖步驟:_______________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)決定派3名教師帶領(lǐng)名學(xué)生到北京參加夏令營(yíng)活動(dòng),甲旅行社的收費(fèi)標(biāo)準(zhǔn)為:教師全價(jià),學(xué)生半價(jià)優(yōu)惠;乙旅行社的收費(fèi)標(biāo)準(zhǔn)為:教師和學(xué)生全部按全票價(jià)的6折(即全票價(jià)的60%)優(yōu)惠.已知甲、乙兩家旅行社的全票價(jià)均為240元.試解答下列問題:
(1)用代數(shù)式表示甲、乙兩家旅行社的收費(fèi)各是多少元?
(2)當(dāng)時(shí),如果你是校長(zhǎng),你會(huì)選擇哪一家旅行社?并簡(jiǎn)單說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)被分隔成、、、、共個(gè)區(qū), 區(qū)是邊長(zhǎng)為的正方形, 區(qū)是邊長(zhǎng)為的正方形.
(1)列式表示每個(gè)區(qū)長(zhǎng)方形場(chǎng)地的周長(zhǎng),并將式子化簡(jiǎn);
(2)列式表示整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的周長(zhǎng),并將式子化簡(jiǎn);
(3)如果, ,求整個(gè)長(zhǎng)方形運(yùn)動(dòng)場(chǎng)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A、B為x軸上兩點(diǎn),C、D為y軸上的兩點(diǎn),經(jīng)過點(diǎn)A、C、B的拋物線的一部分c1與經(jīng)過點(diǎn)A、D、B的拋物線的一部分c2組合成一條封閉曲線,我們把這條封閉曲線成為“蛋線”.已知點(diǎn)C的坐標(biāo)為(0,﹣ ),點(diǎn)M是拋物線C2:y=mx2﹣2mx﹣3m(m<0)的頂點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)“蛋線”在第四象限上是否存在一點(diǎn)P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請(qǐng)說明理由;
(3)當(dāng)△BDM為直角三角形時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com