如圖,在矩形ABCD中,AB=4,BC=3,將△ABC沿AC折疊,點B落在B′處,AB′交CD于E,P為AC上的一個動點,PH⊥AB′于H,PG⊥CD于G,則PG+PH的值為
3
3
分析:延長GP交AB于點F,根據(jù)矩形的性質(zhì)就可以得出CD∥AB,可以得出PF⊥AB,由角平分線的性質(zhì)就可以得出HP=FP,EF的值就是PG+PH的值.
解答:解:延長GP交AB于點F.
∵四邊形ABCD是矩形,
∴AD=BC,AB=CD,AB∥CD,∠B=∠BCD=∠D=∠DAB=90°,
∴∠CGP=∠AFG.
∵PG⊥CD于G,
∴∠CGP=90°,
∴∠AFG=90°.
∴GF⊥AB,
∴∠EFB=90°,
∴∠CGP=∠EFB=∠B=90°
∴四邊形EFBC是矩形,
∴EF=BC
∵△ABC與△AB′C關于AC對稱,
∴△ABC≌△AB′C,
∴∠B′AC=∠BAC,
∵PH⊥AB′,PF⊥AB,
∴PH=PF.
∴PG+PH=PG+PF=EF.
∴BC=3,
∴EF=3,
∴PG+PH=3.
故答案為:3.
點評:本題考查了矩形的性質(zhì)的運用,角平分線的性質(zhì)的運用,軸對稱的性質(zhì)的運用,解答時運用軸對稱的性質(zhì)求解是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在矩形ABCD中,AB=4cm,BC=8cm,點P從點A出發(fā)以1cm/s的速度向點B運動,點Q從點B出發(fā)以2cm/s的速度向點C運動,設經(jīng)過的時間為xs,△PBQ的面積為ycm2,則下列圖象能反映y與x之間的函數(shù)關系的是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,點O在對角線AC上,以OA的長為半徑的⊙O與AD、AC分別交于點E、F,且∠ACB=∠DCE精英家教網(wǎng)
(1)判斷直線CE與⊙O的位置關系,并說明理由;
(2)若AB=
2
,BC=2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖①,在矩形 ABCD中,AB=30cm,BC=60cm.點P從點A出發(fā),沿A→B→C→D路線向點D勻速運動,到達點D后停止;點Q從點D出發(fā),沿 D→C→B→A路線向點A勻速運動,到達點A后停止.若點P、Q同時出發(fā),在運動過程中,Q點停留了1s,圖②是P、Q兩點在折線AB-BC-CD上相距的路程S(cm)與時間t(s)之間的函數(shù)關系圖象.
(1)請解釋圖中點H的實際意義?
(2)求P、Q兩點的運動速度;
(3)將圖②補充完整;
(4)當時間t為何值時,△PCQ為等腰三角形?請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,對角線AC,BD相交于點O,∠AOB=60°,AB=6,則AD=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形ABCD中,AB=4,BC=6,E為線段BC上的動點(不與B、C重合).連接DE,作EF⊥DE,EF與AB交于點F,設CE=x,BF=y.
(1)求y與x的函數(shù)關系式;
(2)x為何值時,y的值最大,最大值是多少?
(3)若設線段AB的長為m,上述其它條件不變,m為何值時,函數(shù)y的最大值等于3?

查看答案和解析>>

同步練習冊答案