【題目】如圖,ABC和A′B′C是兩個完全重合的直角三角板,B=30°,斜邊長為10cm.三角板A′B′C繞直角頂點(diǎn)C順時針旋轉(zhuǎn),當(dāng)點(diǎn)A′落在AB邊上時,CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長為 cm.

【答案】

【解析】

試題根據(jù)RtABC中的30°角所對的直角邊是斜邊的一半、直角三角形斜邊上的中線等于斜邊的一半以及旋轉(zhuǎn)的性質(zhì)推知AA′C是等邊三角形,所以根據(jù)等邊三角形的性質(zhì)利用弧長公式來求CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長:

在RtABC中,B=30°,AB=10cmAC=AB=5cm。

根據(jù)旋轉(zhuǎn)的性質(zhì)知,A′C=AC,A′C=AB=5cm。

點(diǎn)A′是斜邊AB的中點(diǎn),AA′=AB=5cm。

AA′=A′C=AC,∴∠A′CA=60°

CA′旋轉(zhuǎn)所構(gòu)成的扇形的弧長為:(cm)。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種水果,迸價為每箱40元,規(guī)定售價不低于進(jìn)價.現(xiàn)在的售價為每箱72元,每月可銷售60箱.經(jīng)市場調(diào)查發(fā)現(xiàn):若這種牛奶的售價每降低2元,則每月的銷量將增加10箱,設(shè)每箱水果降價x元(x為偶數(shù)),每月的銷量為y箱.

(1)寫出yx之間的函數(shù)關(guān)系式和自變量x的取值范圍.

(2)若該超市在銷售過程中每月需支出其他費(fèi)用500元,則如何定價才能使每月銷售水果的利潤最大?最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為等腰三角形,AB=AC,DABC內(nèi)一點(diǎn),連接AD,將線段AD繞點(diǎn)A旋轉(zhuǎn)至AE,使得∠DAE=BAC,F(xiàn),G,H分別為BC,CD,DE的中點(diǎn),連接BD,CE,GF,GH.

(1)求證:GH=GF;

(2)試說明∠FGH與∠BAC互補(bǔ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明準(zhǔn)備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),作為要制作的風(fēng)箏的一個翅膀,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結(jié)果精確到0.1cm)(參考數(shù)據(jù):sin60°=0.87,cos60°=0.50,tan60°=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,以AB的中點(diǎn)O為圓心、OA為半徑的圓交AC于點(diǎn)D,E是BC的中點(diǎn),連接DE,OE.

(1)判斷DE與⊙O的位置關(guān)系,并說明理由;

(2)求證:BC2=2CD·OE;

(3)若cos∠BAD=,BE=6,求OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖雙曲線(x>0)與直線EF交于點(diǎn)A,點(diǎn)B,且AE=AB=BF,連結(jié)AOBO,它們分別與雙曲線(x>0)交于點(diǎn)C,點(diǎn)D,則:

(1)ABCD的位置關(guān)系是__________

(2)四邊形ABDC的面積為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。

(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將OBC放大到兩倍畫出圖形。

(2)寫出B、C兩點(diǎn)的對應(yīng)點(diǎn)B、C的坐標(biāo);

(3)如果OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫出M的對應(yīng)點(diǎn)M的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線 y=ax2﹣5ax+c x 軸于點(diǎn) A,點(diǎn) A 的坐標(biāo)為(4,0).

(1)用含 a 的代數(shù)式表示 c

(2)當(dāng) a時,求 x 為何值時 y 取得最小值,并求出 y 的最小值.

(3)當(dāng) a時,求 0≤x≤6 y 的取值范圍.

(4)已知點(diǎn) B 的坐標(biāo)為(0,3),當(dāng)拋物線的頂點(diǎn)落在△AOB 外接圓內(nèi)部時,直接寫出 a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案