【題目】某中學(xué)為了解七年級(jí)學(xué)生最喜歡的學(xué)科,從七年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行“我最喜歡的學(xué)科(語(yǔ)文、數(shù)學(xué)、外語(yǔ))”試卷調(diào)查,請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽取了 名學(xué)生;最喜歡“外語(yǔ)”的學(xué)生有 人;
(2)如果該學(xué)校七年級(jí)有500人,那么最喜歡外語(yǔ)學(xué)科的人數(shù)大概有多少?
【答案】(1)50,15;(2)最喜歡外語(yǔ)學(xué)科的人數(shù)大概有150人.
【解析】
(1)用數(shù)學(xué)的調(diào)查人數(shù)22除以數(shù)學(xué)的百分比即可得到總?cè)藬?shù);用總?cè)藬?shù)-13-22即可得到喜歡“外語(yǔ)”的人數(shù);
(2)用500乘以喜歡外語(yǔ)的比例即可得到答案.
(1)本次抽樣調(diào)查共抽取了:22÷44%=50(人),最喜歡“外語(yǔ)”的學(xué)生有:50﹣13﹣22=15(人),
故答案為:50,15;
(2)500×=150(人)
答:最喜歡外語(yǔ)學(xué)科的人數(shù)大概有150人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2﹣4ax+3a.
(1)若a=1,則函數(shù)y的最小值為_______.
(2)當(dāng)1≤x≤4時(shí),y的最大值是4,則a的值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計(jì):今年7月20日豬肉價(jià)格比今年年初上漲了60%,某市民今年7月20日在某超市購(gòu)買1千克豬肉花了80元錢.
(1)問(wèn):今年年初豬肉的價(jià)格為每千克多少元?
(2)某超市將進(jìn)貨價(jià)為每千克65元的豬肉,按7月20日價(jià)格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價(jià)每千克下降1元,其日銷售量就增加10千克,超市為了實(shí)現(xiàn)銷售豬內(nèi)每天有1560元的利潤(rùn),并且可能讓顧客得到實(shí)惠,豬肉的售價(jià)應(yīng)該下降多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A在y軸上,∠OAB=30°,B(2,0),OC⊥AB于點(diǎn)C,點(diǎn)C在反比例函數(shù)y=(k≠0)的圖象上.
(1)求該反比例函數(shù)解析式;
(2)若點(diǎn)D為反比例函數(shù)y=(k≠0)在第一象限的圖象上一點(diǎn),且∠DOC=30°,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點(diǎn),F是AM的中點(diǎn),EF⊥AM,垂足為F,交AD的延長(zhǎng)線于點(diǎn)E,交DC于點(diǎn)N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a<0)與x軸交于點(diǎn)A(﹣1,0)、點(diǎn)B,與y軸交于點(diǎn)C,拋物線的對(duì)稱軸是直線x=1,連接BC、AC.
(1)求S△ABC(用含有a的代數(shù)式來(lái)表示);
(2)若S△ABC=6,求拋物線的解析式;
(3)在(2)的條件下,當(dāng)﹣1≤x≤m+1時(shí),y的最大值是2,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示,已知正方形ABCD和正方形AEFG,連接DG,BE.
(1)發(fā)現(xiàn):當(dāng)正方形AEFG繞點(diǎn)A旋轉(zhuǎn),如圖②所示.
①線段DG與BE之間的數(shù)量關(guān)系是 ;
②直線DG與直線BE之間的位置關(guān)系是 ;
(2)探究:如圖③所示,若四邊形ABCD與四邊形AEFG都為矩形,且AD=2AB,AG=2AE時(shí),上述結(jié)論是否成立,并說(shuō)明理由.
(3)應(yīng)用:在(2)的情況下,連接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,CD切⊙O于C點(diǎn),弦CF⊥AB于E點(diǎn),連結(jié)AC.
(1)求證:∠ACD=∠ACF;
(2)當(dāng)AD⊥CD,BE=2cm,CF=8cm,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與實(shí)踐:
問(wèn)題情境:在矩形ABCD中,點(diǎn)E為BC邊的中點(diǎn),將△ABE沿直線AE翻折,使點(diǎn)B與點(diǎn)F重合,直線AF交直線CD于點(diǎn)G.
特例探究
實(shí)驗(yàn)小組的同學(xué)發(fā)現(xiàn):
(1)如圖1,當(dāng)AB=BC時(shí),AG=BC+CG,請(qǐng)你證明該小組發(fā)現(xiàn)的結(jié)論;
(2)當(dāng)AB=BC=4時(shí),求CG的長(zhǎng);
延伸拓展
(3)實(shí)知小組的同學(xué)在實(shí)驗(yàn)小組的啟發(fā)下,進(jìn)一步探究了當(dāng)AB:BC=時(shí),線段AG、BC、CG之間的數(shù)量關(guān)系,請(qǐng)你直接寫(xiě)出實(shí)知小組的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com