【題目】如圖,AB是半圓O的直徑,點(diǎn)P(不與點(diǎn)A,B重合)為半圓上一點(diǎn),將圖形沿BP折疊,分別得到點(diǎn)A,O的對應(yīng)點(diǎn)點(diǎn)A′,O′,過點(diǎn)A′C∥AB,若A′C與半圓O恰好相切,則∠ABP的大小為_____°.
【答案】15
【解析】
作OG⊥A′C于G,BH⊥A′C于H,如圖,根據(jù)切線的性質(zhì)得到OG=OB,再利用A′C∥AB可證明四邊形OBHG為正方形,接著根據(jù)折疊的性質(zhì)得∠A′BP=∠ABP=α,BA′=BA,所以A′B=2BH,根據(jù)特殊角的三角函數(shù)值得到∠BA′H=30°,然后利用∠HA′B=∠ABA′=2α可確定α的度數(shù).
作OG⊥A′C于G,BH⊥A′C于H,如圖,
∵A′C與半圓O恰好相切,
∴OG為⊙O的半徑,即OG=OB,
∵A′C∥AB,
∴OG⊥OB,BH⊥OB,∠HA′B=∠ABA′,
∴四邊形OBHG為正方形,
∵圖形沿BP折疊,分別得到點(diǎn)A,O的對應(yīng)點(diǎn)點(diǎn)A′,O′,
∴∠A′BP=∠ABP=α,BA′=BA,
∴A′B=2BH,
∴∠BA′H=30°,
∵∠HA′B=∠ABA′=2α,
∴α=15°,
故答案為:15.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,面積為4的正方形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,邊、分別在軸、軸的正半軸上,點(diǎn)、都在函數(shù)的圖象上,過動點(diǎn)分別作軸、軸的平行線,交軸、軸于點(diǎn)、.設(shè)矩形與正方形重疊部分圖形的面積為,點(diǎn)的橫坐標(biāo)為m.
(1)求的值;
(2)用含的代數(shù)式表示的長;
(3)求與之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育局對該市部分學(xué)校的八年級學(xué)生對待學(xué)習(xí)的態(tài)度進(jìn)行了一次抽樣調(diào)查(把學(xué)習(xí)態(tài)度分為三個層級,A級:對學(xué)習(xí)很感興趣;B級:對學(xué)習(xí)較感興趣;C級:對學(xué)習(xí)不感興趣),并將調(diào)查結(jié)果繪制成圖①和圖②的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:
(1)此次抽樣調(diào)查中,共調(diào)查了________名學(xué)生;
(2)圖②中C級所占的圓心角的度數(shù)是__________;
(3)根據(jù)抽樣調(diào)查結(jié)果,請你估計該市近20000名八年級學(xué)生中大約有多少名學(xué)生學(xué)習(xí)態(tài)度達(dá)標(biāo)(達(dá)標(biāo)包括A級和B級)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的的直徑,弦CD與AB相交,∠BCD=25°。
(1)如圖1,求∠ABD的大;
(2)如圖2,過點(diǎn)D作O的切線,與AB的延長線交于點(diǎn)P,若DP∥AC,求∠OCD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,在△ABC中,點(diǎn)M為BC邊的中點(diǎn),且MA=BC,求證:∠BAC=90°.
(2)如圖2,直線a、b相交于點(diǎn)A,點(diǎn)C、E分別是直線b、a上兩點(diǎn),ED⊥b,垂足為點(diǎn)D,點(diǎn)M是EC的中點(diǎn),MD=MB,DE=2,BC=3,求△ADE和△ABC的面積之比.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b分別交y軸、x軸于C、D兩點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于A(m,8),B(4,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b﹣<0的x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的袋中裝有2個黃球,1個紅球和1個白球,除色外都相同.
(1)攪勻后,從袋中隨機(jī)出一個球,恰好是黃球的概是_____?
(2)攪勻后,從中隨機(jī)摸出兩個球,求摸到一個紅球和一個黃球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為,與y軸負(fù)半軸交于點(diǎn)C.
若是等腰直角三角形,求a的值.
探究:是否存在a,使得是等腰三角形?若存在,求出符合條件的a的值;不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為邊在第一象限內(nèi)作等邊△ABC,
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點(diǎn)P(a,),試用含a的式子表示四邊形ABPO的面積,并求出當(dāng)△ABP的面積與△ABC的面積相等時a的值;
(3)在x軸上,存在這樣的點(diǎn)M,使△MAB為等腰三角形.請直接寫出所有符合要求的點(diǎn)M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com