【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+4與x軸的正半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,點(diǎn)C在線段OA上,點(diǎn)D在此拋物線上,CD⊥x軸,且∠DCB=∠DAB,AB與CD相交于點(diǎn)E.
(1)求證:△BDE∽△CAE;
(2)已知OC=2,tan∠DAC=3,求此拋物線的表達(dá)式.
【答案】
(1)
證明:∵∠DCB=∠DAB,∠BEC=∠DEA,
∴△BEC∽△DEA,
∴ = ,又∠BED=∠CEA,
∴△BDE∽△CAE;
(2)
解:∵拋物線y=ax2+bx+4與y軸相交于點(diǎn)B,
∴點(diǎn)B的坐標(biāo)為(0,4),即OB=4,
∵tan∠DAC=3,
∴ =3,
設(shè)AC=m,則DC=3m,OA=m+2,
則點(diǎn)A的坐標(biāo)為(m+2,0),點(diǎn)D的坐標(biāo)為(2,3m),
∵△BDE∽△CAE,
∴∠DBA=∠DCA=90°,
∴BD2+BC2=CD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,
解得,m=2,
則點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)D的坐標(biāo)為(2,6),
∴ ,
解得, ,
∴拋物線的表達(dá)式為y=﹣x2+3x+4
【解析】(1)根據(jù)相似三角形的判定定理得到△BEC∽△DEA,根據(jù)相似三角形的性質(zhì)定理得到 = ,根據(jù)相似三角形的判定定理證明即可;(2)設(shè)AC=m,根據(jù)正切的定義得到DC=3m,根據(jù)相似三角形的性質(zhì)得到∠DBA=∠DCA=90°,根據(jù)勾股定理列出算式,求出m的值,利用待定系數(shù)法求出拋物線的解析式.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的概念和二次函數(shù)的圖象的相關(guān)知識可以得到問題的答案,需要掌握一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù);二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)四棱錐P﹣ABCD的底面不是平行四邊形,用平面 α去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面α( )
A.不存在
B.只有1個
C.恰有4個
D.有無數(shù)多個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=2,邊AB的垂直平分線交AC邊于點(diǎn)D,交AB邊于點(diǎn)E,聯(lián)結(jié)DB,那么tan∠DBC的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是邊長為2的等邊三角形,點(diǎn)D在邊BC上,將△ABD沿著直線AD翻折,點(diǎn)B落在點(diǎn)B1處,如果B1D⊥AC,那么BD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點(diǎn)E為線段BD上任意一點(diǎn)(點(diǎn)E與點(diǎn)B,D不重合),過點(diǎn)E作EF∥CD,與BC相交于點(diǎn)F,連接CE.設(shè)BE=x,y= .
(1)求BD的長;
(2)如果BC=BD,當(dāng)△DCE是等腰三角形時,求x的值;
(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,過點(diǎn)A作AD⊥BC,垂足為點(diǎn)D,延長AD至點(diǎn)E,使DE= AD,過點(diǎn)A作AF∥BC,交EC的延長線于點(diǎn)F.
(1)設(shè) = , = ,用 、 的線性組合表示 ;
(2)求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E是CD的延長線上一點(diǎn),BE與AD交于點(diǎn)F,若ED:DC=2:3,△DEF的面積為8,則平行四邊形ABCD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:數(shù)學(xué)活動課上老師出示問題,如圖1,有邊長為a的正方形紙片一張,三邊長分別為a、b、c的全等直角三角形紙片兩張,且b .請你用這三張紙片拼出一個圖案,并將這個圖案的某部分進(jìn)行旋轉(zhuǎn)或平移變換之后,提出一個問題(可以添加其他條件,例如可以給出a、b的值等等).
解決問題:
下面是兩個學(xué)習(xí)小組拼出圖案后提出的問題,請你解決他們提出的問題.
(1)“愛心”小組提出的問題是:如圖2,將△DFC繞點(diǎn)F逆時針旋轉(zhuǎn),使點(diǎn)D恰好落在AD邊上的點(diǎn)D′處,猜想此時四邊形AEFD′是什么特殊四邊形,并加以證明;
(2)“希望”小組提出的問題是:如圖3,點(diǎn)M為BE中點(diǎn),將△DCF向左平移至DF恰好過點(diǎn)M時停止,且補(bǔ)充條件a=6,b=2,求△DCF平移的距離.
自主創(chuàng)新:
(3)請你仿照上述小組的同學(xué),在下面圖4的空白處用實(shí)線畫出你拼出的圖案,用虛線畫出變換圖,并在橫線處寫出你提出的問題.(不必解答)
你提出的問題: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+ )米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為 米/秒.若小明與小軍同時到達(dá)山頂C處,則小明的行走速度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com