如圖,在直角坐標(biāo)系中,Rt△OAB和Rt△OCD的直角頂點(diǎn)A,C始終在軸的正半軸上,B,D在第一象限內(nèi),點(diǎn)B在直線OD上方,OC=CD,OD=2,M為OD的中點(diǎn),AB與OD相交于E,當(dāng)點(diǎn)B位置變化時,Rt△OAB的面積恒為.試解決下列問題:

(1)填空:點(diǎn)D坐標(biāo)為      ;

(2)設(shè)點(diǎn)B橫坐標(biāo)為,請把BD長表示成關(guān)于的函數(shù)關(guān)系式,并化簡;

(3)等式BO=BD能否成立?為什么?

(4)設(shè)CM的延長線與AB相交于F,當(dāng)△BDE為直角三角形時,判斷四邊形BDCF的形狀(無需證明).

 

【答案】

(1);                       

(2)

   ① 

   

  ②       

   (3)若OB=BD,則

由①得     

∴△,∴此方程無解

∴OB≠BD                          

   (4)如果△BDE為直角三角形,

①當(dāng)∠EBD=90º時,此時四邊形BDCF為直角梯形.    

②當(dāng)∠EDB=90º時,此時四邊形BDCF為菱形          

【解析】(1)在Rt△OCD中,根據(jù)勾股定理易求;

(2)根據(jù)Rt△OAB的面積是可求出B點(diǎn)的坐標(biāo),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/2012111921441959763477/SYS201211192145366913476327_DA.files/image014.png">,所以把B點(diǎn)的坐標(biāo)代入可得BD長,即可表示成關(guān)于t的函數(shù)關(guān)系式.

(3)假設(shè)OB=BD,在Rt△OAB中,用t把OB表示出來,根據(jù)題(2)中用t表示的BD.兩者相等,可得一二次函數(shù)表達(dá)式,用根的判別式判斷是否有解.

(4)兩種情況,先假設(shè)∠EBD=90°時(如圖2),此時F、E、M三點(diǎn)重合,根據(jù)已知條件此時四邊形BDCF為直角梯形,然后假設(shè)∠EDB=90°時(如圖3),根據(jù)已知條件,此時四邊形BDCF為平行四邊形,在Rt△OCD中,OB2=OD2+BD2,用t把各線段表示出來代入,可求出,即此時四邊形BDCF為菱形.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形⑦的直角頂點(diǎn)的坐標(biāo)為
(24,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(3,4),將OP繞原點(diǎn)O逆時針旋轉(zhuǎn)90°得到線段OP′.
(1)在圖中畫出線段OP′;
(2)求P′的坐標(biāo)和
PP′
的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,O為原點(diǎn).反比例函數(shù)y=
6
x
的圖象經(jīng)過第一象限的點(diǎn)A,點(diǎn)A的縱坐標(biāo)是橫坐標(biāo)的
3
2
倍.
(1)求點(diǎn)A的坐標(biāo);
(2)如果經(jīng)過點(diǎn)A的一次函數(shù)圖象與x軸的負(fù)半軸交于點(diǎn)B,AC⊥x軸于點(diǎn)C,若△ABC的面積為9,求這個一次函數(shù)的解析式.
(3)點(diǎn)D在反比例函數(shù)y=
6
x
的圖象上,且點(diǎn)D在直線AC的右側(cè),作DE⊥x軸于點(diǎn)E,當(dāng)△ABC與△CDE相似時,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(-6,0),B(-4,6),C(0,2).畫出△ABC的兩個位似圖形△A1B1C1,△A2B2C2,同時滿足下列兩個條件:
(1)以原點(diǎn)O為位似中心;
(2)△A1B1C1,△A2B2C2與△ABC的面積比都是1:4.(作出圖形,保留痕跡,標(biāo)上相應(yīng)字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面積是
6
6
;
(2)三角形(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

同步練習(xí)冊答案