如圖,AB為⊙O的直徑,BC⊥AB,CP切⊙O于點P,連OC,交⊙O于N,交BP于E,連BN,AP.
(1)求證:BN平分∠PBC.
(2)連AC交BP于M,若AB=BC=4,求tan∠PAC的值.
(1)證明:連接PO,
∵CB⊥AB,
∴CB是⊙O切線,
∵CP是⊙O切線,
∴PC=BC,
即C在PB垂直平分線上,
∵OP=OB,
∴O在PB的垂直平分線上,
∴OC⊥PB,PE=BE,
∴∠BEC=∠CBO=90°,
∴∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,
∵ON=OB,
∴∠ONB=∠OBN,
∴∠NBP=∠NBC,
∴BN平分∠PBC.

(2)∵BE⊥OC,
∴∠OEB=∠CEB=∠OBC=90°,
∴∠OBE+∠EOB=90°,∠EBO+∠EBC=90°,
∴∠EOB=∠EBC,
∴△OEB△BEC,
OB
BC
=
OE
BE
=
BE
CE
,
∵OB=
1
2
AB=2,BC=4,
∴BE=2OE,CE=2BE=4OE,
設(shè)OE=x,則CE=4x,
∵PE=BE,AO=OB,
∴AP=2OE=2x,
過C作CQ⊥AP交AP延長線于Q,
則∠Q=∠QPE=∠PEC=90°,
∴四邊形QPEC是矩形,
∴QC=PE=BE=2x,QP=CE=4x,
∴AQ=4x+2x=6x,
在Rt△AQC中,tan∠PAC=
CQ
AQ
=
2x
6x
=
1
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,由正方形ABCD的頂點A引一直線分別交BD、CD及BC的延長線于E、F、G,⊙O是△CGF的外接圓,求證:CE和⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:射線OF交⊙O于點B,半徑OA⊥OB,P是射線OF上的一個動點(不與O、B重合),直線AP交⊙O于D,過D作⊙O的切線交射線OF于E.
(1)圖a是點P在圓內(nèi)移動時符合已知條件的圖形,請你在圖b中畫出點P在圓外移動時符合已知條件的圖形;
(2)觀察圖形,點P在移動過程中,△DPE的邊、角或形狀存在某些規(guī)律,請你通過觀察、測量、比較,寫出一條與△DPE的邊、角或形狀有關(guān)的規(guī)律;
(3)在點P移動過程中,設(shè)∠DEP的度數(shù)為x,∠OAP的度數(shù)為y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,∠A=60°,BC=6,它的周長為16.若⊙O與BC,AC,AB三邊分別切于E,F(xiàn),D點,則DF的長為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB,BC分別是⊙O的直徑和弦,點D為
BC
上一點,弦DE交⊙O于點E,交AB于點F,交BC于點G,過點C的切線交ED的延長線于H,且HC=HG,連接BH,交⊙O于點M,連接MD,ME.
求證:
(1)DE⊥AB;
(2)∠HMD=∠MHE+∠MEH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AC是弦,D是
BC
的中點,過點D作AC的延長線的垂線DP,垂足為P.若PD=12,PC=8,求⊙O的半徑R的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知:在直角坐標(biāo)系中.點E從O點出發(fā),以1個單位/秒的速度沿x軸正方向運動,點F從O點出發(fā),以2個單位/秒的速度沿y軸正方向運動.B(4,2),以BE為直徑作⊙O1

(1)若點E、F同時出發(fā),設(shè)線段EF與線段OB交于點G,試判斷點G與⊙O1的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,連接FB,幾秒時FB與⊙O1相切?
(3)若點E提前2秒出發(fā),點F再出發(fā).當(dāng)點F出發(fā)后,點E在A點的左側(cè)時,設(shè)BA⊥x軸于點A,連接AF交⊙O1于點P,試問AP•AF的值是否會發(fā)生變化?若不變,請說明理由并求其值;若變化,請求其值的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)計一把直尺ABC,BC在地面上,AB與地面垂直,并且AB=10cm,移動一個半徑不小于10cm的圓形輪子,使輪子緊靠A點,且與BC相切于D點(如圖).設(shè)計要求在D處的刻度恰好顯示這個輪子的半徑(以厘米為單位).那么,當(dāng)BC的長度為1M時,BC上可標(biāo)出的最大刻度是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB與⊙O相切于點B,AO的延長線交⊙O于點C,連接BC,若∠A=36°,則∠C=______.

查看答案和解析>>

同步練習(xí)冊答案