16.如圖,點(diǎn)B,F(xiàn),C,E在直線l上(F,C之間不能直接測(cè)量),點(diǎn)A,D在l異側(cè),測(cè)得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.

分析 (1)先證明BC=EF,再根據(jù)SSS即可證明.
(2)結(jié)論AB∥DE,AC∥DF,根據(jù)全等三角形的性質(zhì)即可證明.

解答 (1)證明:∵BF=CE,
∴BF+FC=FC+CE,即BC=EF,
在△ABC和△DEF中,
$\left\{\begin{array}{l}{AB=DE}\\{AC=DF}\\{BC=EF}\end{array}\right.$,
∴△ABC≌△DEF(SSS).
(2)結(jié)論:AB∥DE,AC∥DF.
理由:∵△ABC≌△DEF,
∴∠ABC=∠DEF,∠ACB=∠DFE,
∴AB∥DE,AC∥DF.

點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、平行線的判定等知識(shí),解題的關(guān)鍵是正確尋找全等三角形的條件,記住平行線的判定方法,屬于基礎(chǔ)題,中考?碱}型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,正三角形ABC內(nèi)接于圓O,AD⊥BC于點(diǎn)D交圓于點(diǎn)E,動(dòng)點(diǎn)P在優(yōu)弧BAC上,且不與點(diǎn)B,點(diǎn)C重合,則∠BPE等于( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

7.如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5$\sqrt{5}$cm,且tan∠EFC=$\frac{3}{4}$,那么矩形ABCD的周長(zhǎng)為36cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.下列四個(gè)命題:
①對(duì)角線互相垂直的平行四邊形是正方形;
②$\sqrt{{{(m-1)}^2}}=m-1$,則m≥1;
③過弦的中點(diǎn)的直線必經(jīng)過圓心;
④圓的切線垂直于經(jīng)過切點(diǎn)的半徑;
⑤圓的兩條平行弦所夾的弧相等;
其中正確的命題有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

11.小聰有一塊含有30°角的直角三角板,他想只利用量角器來測(cè)量較短直角邊的長(zhǎng)度,于是他采用如圖的方法,小聰發(fā)現(xiàn)點(diǎn)A處的三角板讀數(shù)為12cm,點(diǎn)B處的量角器的讀數(shù)為74°,由此可知三角板的較短直角邊的長(zhǎng)度約為9cm.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

1.如圖,把平行四邊形ABCD折疊,使點(diǎn)C與點(diǎn)A重合,這時(shí)點(diǎn)D落在D1,折痕為EF,若∠BAE=55°,則∠D1AD=55°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

8.已知關(guān)于x的一元二次方程x2+mx-8=0的一個(gè)實(shí)數(shù)根為2,則另一實(shí)數(shù)根及m的值分別為( 。
A.4,-2B.-4,-2C.4,2D.-4,2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,?ABCD中,BD是它的一條對(duì)角線,過A、C兩點(diǎn)作AE⊥BD,CF⊥BD,垂足分別為E、F,延長(zhǎng)AE、CF分別交CD、AB于M、N.
(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=4,F(xiàn)N=3,求BN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

6.已知二次函數(shù)y=ax2-2ax+c(a<0)的最大值為4,且拋物線過點(diǎn)($\frac{7}{2}$,-$\frac{9}{4}$),點(diǎn)P(t,0)是x軸上的動(dòng)點(diǎn),拋物線與y軸交點(diǎn)為C,頂點(diǎn)為D.
(1)求該二次函數(shù)的解析式,及頂點(diǎn)D的坐標(biāo);
(2)求|PC-PD|的最大值及對(duì)應(yīng)的點(diǎn)P的坐標(biāo);
(3)設(shè)Q(0,2t)是y軸上的動(dòng)點(diǎn),若線段PQ與函數(shù)y=a|x|2-2a|x|+c的圖象只有一個(gè)公共點(diǎn),求t的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案