分析 (1)只要證明CM∥AN,AM∥CN即可.
(2)先證明△DEM≌△BFN得BN=DM,再在Rt△DEM中,利用勾股定理即可解決問(wèn)題.
解答 (1)證明:∵四邊形ABCD是平行四邊形,
∴CD∥AB,
∵AM⊥BD,CN⊥BD,
∴AM∥CN,
∴CM∥AN,AM∥CN,
∴四邊形AMCN是平行四邊形.
(2)∵四邊形AMCN是平行四邊形,
∴CM=AN,
∵四邊形ABCD是平行四邊形,
∴CD=AB,CD∥AB,
∴DM=BN,∠MDE=∠NBF,
在△MDE和△NBF中,
$\left\{\begin{array}{l}{∠MDE=∠NBF}\\{∠DEM=∠NFB=90°}\\{DM=BN}\end{array}\right.$,
∴△MDE≌△NBF,
∴ME=NF=3,
在Rt△DME中,∵∠DEM=90°,DE=4,ME=3,
∴DM=$\sqrt{D{E}^{2}+M{E}^{2}}$=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∴BN=DM=5.
點(diǎn)評(píng) 本題考查平行四邊形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是記住平行四邊形的判定方法和性質(zhì),正確尋找全等三角形解決問(wèn)題,屬于中考常考題型.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | AG平分∠DAB | B. | AD=DH | C. | DH=BC | D. | CH=DH |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y-$\frac{1}{y}$-3=0 | B. | y-$\frac{4}{y}$-3=0 | C. | y-$\frac{1}{y}$+3=0 | D. | y-$\frac{4}{y}$+3=0 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com