【題目】△ABC中,若AB=9,BC=6,則第三邊CA的長度可以是( 。

A. 3 B. 9 C. 15 D. 16

【答案】B

【解析】

根據(jù)三角形的三邊關系,即可求解.

第三邊大于兩邊之差,而小于兩邊之和,即3<CA<15

故答案選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A,B的坐標分別為(1,0),(0,2),若將線段AB平移到A1B1,點A1B1的坐標分別為(2,a),(b,3),則a22b的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正比例函數(shù)y=kx經(jīng)過點A , 點A在第四象限,過點AAHx軸,垂足為點H , 點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P , 使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分12分)如圖,拋物線y=x2﹣2x﹣3與x軸交于A、B兩點(A點在B點左側(cè)),直線l與拋物線交于A、C兩點,其中C點的橫坐標為2.

(1)求A、B、C三點的坐標;

(2)在拋物線的對稱軸上找到點P,使得PBC的周長最小,并求出點P的坐標;

(3)點G拋物線上的動點,在x軸上是否存在點F,使A、C、F、G為頂點四邊形是平行四邊形?如果存在,請直接寫出F點坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點,交點分別是點B和點C,且拋物線的對稱軸為直線x=4

1)求出拋物線與x軸的兩個交點A,B的坐標.

(2)試確定拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法不正確的是( 。

A. 某種彩票中獎的概率是,買1000張該種彩票一定會中獎

B. 了解一批電視機的使用壽命適合用抽樣調(diào)查

C. 若甲組數(shù)據(jù)的標準差S=0.31,乙組數(shù)據(jù)的標準差S=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

D. 在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為鼓勵大眾創(chuàng)業(yè),萬眾創(chuàng)新,某市政府出臺了相關政策:由政府協(xié)調(diào),本市企業(yè)按成本價提供產(chǎn)品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數(shù):y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】研究表明,H1N1流感球形病毒細胞的直徑約為0.00000156m,用科學記數(shù)法表示這個數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全球平均每年發(fā)生雷電次數(shù)約為16000000次,將16000000用科學記數(shù)法表示是

查看答案和解析>>

同步練習冊答案