【題目】已知正比例函數(shù)y=kx經(jīng)過點A , 點A在第四象限,過點A作AH⊥x軸,垂足為點H , 點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點P , 使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青年旅社有60間客房供游客居住,在旅游旺季,當(dāng)客房的定價為每天200元時,所有客房都可以住滿.客房定價每提高10元,就會有1個客房空閑,對有游客入住的客房,旅社還需要對每個房間支出20元/每天的維護費用,設(shè)每間客房的定價提高了x元.
(1)填表(不需化簡)
入住的房間數(shù)量 | 房間價格 | 總維護費用 | |
提價前 | 60 | 200 | 60×20 |
提價后 |
|
|
|
(2)若該青年旅社希望每天純收入為14000元且能吸引更多的游客,則每間客房的定價應(yīng)為多少元?(純收入=總收入﹣維護費用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,下面四個結(jié)論:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正確的是 (將你認為正確結(jié)論的序號都寫上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A的坐標為(0,2),點P(t,0)在x軸上,B是線段PA的中點.將線段PB繞著點P順時針方向旋轉(zhuǎn)90°,得到線段PC,連結(jié)OB、BC.
(1)判斷△PBC的形狀,并簡要說明理由;
(2)當(dāng)t>0時,試問:以P、O、B、C為頂點的四邊形能否為平行四邊形?若能,求出相應(yīng)的t的值?若不能,請說明理由;
(3)當(dāng)t為何值時,△AOP與△APC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 在Rt△ABC中,∠C=90°,若tanA= ,則a=3,b=4
B. 若△ABC三邊之比為1: ,且∠A為最小角,則sinA=
C. 對于銳角α,必有sinα>cosα
D. 在Rt△ABC中,若∠C=90°,則sin2A+cos2A=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com