正方形ABCD,以對(duì)角線BD為邊作菱形BDEF,連接DF,則∠FDE=(  )
分析:根據(jù)正方形的性質(zhì)可得出∠BDC=45°,再由菱形的對(duì)角線平分一組對(duì)角可得出∠FDE的度數(shù).
解答:解:∵ABCD是正方形,
∴∠BDC=
1
2
∠ADC=45°;
又∵BDEF是菱形,
∴∠FDE=
1
2
∠BDC=22.5°.
故選C.
點(diǎn)評(píng):此題考查了正方形的性質(zhì)、菱形的性質(zhì),關(guān)鍵是掌握正方形及菱形的每條對(duì)角線平分一組對(duì)角,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為1的正方形ABCD中,以A為圓心,1為半徑作
BD
,將一塊直角三角板的直角頂點(diǎn)P放置在
BD
(不包括端點(diǎn)B、D)上滑動(dòng),一條直角邊通過(guò)頂點(diǎn)A,另一條直角邊與邊BC相交于點(diǎn)Q,連接PC,并設(shè)PQ=x,以下我們對(duì)精英家教網(wǎng)△CPQ進(jìn)行研究.
(1)△CPQ能否為等邊三角形?若能,則求出x的值;若不能,則說(shuō)明理由;
(2)求△CPQ周長(zhǎng)的最小值;
(3)當(dāng)△CPQ分別為銳角三角形、直角三角形和鈍角三角形時(shí)分別求x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、如圖,有兩個(gè)動(dòng)點(diǎn)E,F(xiàn)分別從正方形ABCD的兩個(gè)頂點(diǎn)B,C同時(shí)出發(fā),以相同速度分別沿邊BC和CD移動(dòng),問(wèn):
(1)在E,F(xiàn)移動(dòng)過(guò)程中,AE與BF的位置和大小有何關(guān)系?并給予證明;
(2)若AE和BF相交點(diǎn)O,圖中有多少對(duì)相似三角形?請(qǐng)把它們寫(xiě)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,正方形ABCD的面積為2a,將正方形ABCD的對(duì)角線BD繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°至BE,以BD和BE為鄰邊作正方形BDFE,則此正方形BDFE的面積為
 
.(用含a的代數(shù)式表示);
(2)如圖2所示,再將正方形BDFE的對(duì)角線BF繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°至BG,以BF和BG為鄰邊作正方形BFHG,則此正方形BFHG的面積為
 
(用含a的代數(shù)式表示);
(3)如果按著上述的過(guò)程作第三次旋轉(zhuǎn)后,所得到的正方形的面積為
 
(用含a的代數(shù)式表示);
(4)在一塊邊長(zhǎng)為10米的正方形空地內(nèi)種植上草坪(如圖3陰影部分所示),由于這塊正方形空地的左邊和前邊都有許多空地,所以,就在它的左邊和前邊(按著圖2所示的過(guò)程)連續(xù)兩次對(duì)這塊草坪擴(kuò)大種植面積,最后如圖3所示的整個(gè)區(qū)域內(nèi)都種上草坪,那么此時(shí)的草坪面積是多少平方米?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,正方形ABCD的面積為2a,將正方形ABCD的對(duì)角線BD繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°至BE,以BD和BE為鄰邊作正方形BDFE,則正方形BDFE的面積為
 
(用含a的代數(shù)式表示);
(2)如圖2所示,再將正方形BDFE的對(duì)角線BF繞點(diǎn)B按逆時(shí)針?lè)较蛐D(zhuǎn)90°至BG,以BF和BG為鄰邊作正方形BFHG,則正方形BFHG的面積為
 
(用含a的代數(shù)式表示);
(3)如果按著上述的過(guò)程作第2010次旋轉(zhuǎn)后,所得到的正方形的面積為
 
(用含a的代數(shù)式表示);
(4)在一塊邊長(zhǎng)為10米的正方形空地內(nèi)種上草坪(如圖3陰影部分所示),由于這塊正方形空地的左邊和前邊都有許多空地,所以,就在它的左邊和前邊(按著圖2所示的過(guò)程)連續(xù)兩次對(duì)這塊草坪擴(kuò)大種植面積,最后如圖3所示的整個(gè)區(qū)域內(nèi)都種上草坪,那么此時(shí)的草坪面積是多少平方米?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

學(xué)習(xí)與探究:
(1)請(qǐng)?jiān)趫D1的正方形ABCD中,作出使∠APB=90°的所有點(diǎn)P,并簡(jiǎn)要說(shuō)明做法.我們可以這樣解決問(wèn)題:利用直徑所對(duì)的圓周角等于90°,作以AB為直徑的圓,則正方形ABCD內(nèi)部的半圓上所有點(diǎn)(A、B除外)為所求.
(2)請(qǐng)?jiān)趫D2的正方形ABCD內(nèi)(含邊),畫(huà)出使∠APB=60°的所有的點(diǎn)P,尺規(guī)作圖,不寫(xiě)作法,保留痕跡;
(3)如圖3,已知矩形ABCD中,AB=4,AC=3,請(qǐng)?jiān)诰匦蝺?nèi)(含邊),畫(huà)出∠APB=60°的所有的點(diǎn)P,尺規(guī)作圖,不寫(xiě)作法,保留痕跡.

查看答案和解析>>

同步練習(xí)冊(cè)答案