【題目】某工廠在生產(chǎn)過程中每消耗1萬度電可以產(chǎn)生產(chǎn)值5.5萬元,電力公司規(guī)定,該工廠每月用電量不得超過16萬度;月用電量不超過4萬度時(shí),單價(jià)都是1萬元/萬度;超過4萬度時(shí),超過部分電量單價(jià)將按用電量進(jìn)行調(diào)整.電價(jià)y與月用電量x的函數(shù)關(guān)系可以用下圖來表示(效益=產(chǎn)值-用電量×電價(jià)).

(1)y與月用電量x之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)設(shè)工廠的月效益為z(萬元),寫出z與用電量x之間的函數(shù)關(guān)系式;

(3)求工廠最大月效益.

【答案】(1);(2) z;(3)工廠最大月效益為54萬元.

【解析】分析:(1)根據(jù)題意,電價(jià)y與用電量x的函數(shù)關(guān)系式是分段函數(shù),當(dāng)0≤x≤4時(shí)y=1,當(dāng)4<x≤16時(shí)待定系數(shù)法可求得,(2)根據(jù)效益=產(chǎn)值-用電量×電價(jià),0≤x≤4,4<x≤16兩種情況分別表示可得,(3)根據(jù)一次函數(shù)和二次函數(shù)性質(zhì)結(jié)合自變量取值范圍得到最大值,比較即可.

詳解:(1)由題圖知電價(jià)y與用電量x的函數(shù)關(guān)系式是分段函數(shù).

當(dāng)0x4時(shí),y=1,

當(dāng)4<x16時(shí),函數(shù)是過點(diǎn)(4,1)(8,1.5)的一次函數(shù),

設(shè)一次函數(shù)為ykxb,

,

解得,

∴電價(jià)y與用電量x的函數(shù)關(guān)系為

y,

(2)月效益z與用電量x之間的函數(shù)關(guān)系式為:

z,

z,

(3)當(dāng)0x4時(shí),zx,此時(shí),z隨著x的增大而增大,

∴當(dāng)x=4時(shí),z取最大值為18.

當(dāng)4<x16時(shí),z=-x2x-2=- (x-22)2,

∴當(dāng)x22時(shí),zx的增大而增大,

∴當(dāng)x=16時(shí),z取最大值為54.

故當(dāng)0x16時(shí),z的最大值為54,

即工廠最大月效益為54萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,l是過A的一條直線,BD⊥AED,CE⊥AEE.求證:

(1)當(dāng)直線l繞點(diǎn)A旋轉(zhuǎn)到如圖1位置時(shí),試說明:DE=BD+CE.

(2)若直線l繞點(diǎn)A旋轉(zhuǎn)到如圖2位置時(shí),試說明:DE=BD﹣CE.

(3)若直線l繞點(diǎn)A旋轉(zhuǎn)到如圖3位置時(shí),試問:BDDE,CE具有怎樣的等量關(guān)系?請寫出結(jié)果,不必證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣ x+4交x軸于點(diǎn)A,交y軸于點(diǎn)C,拋物線y=ax2 x+c過點(diǎn)A,交y軸于點(diǎn)B(0,﹣2)

(1)求拋物線的解析式;
(2)點(diǎn)M為拋物線在第四象限部分上的一個(gè)動(dòng)點(diǎn),求四邊形BMAC面積的最大值;
(3)點(diǎn)D為拋物線對稱軸上一點(diǎn),規(guī)定:d=|AD﹣BD|,探究d是否存在最大值?若存在,請直接寫出d的最大值及此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A從原點(diǎn)出發(fā)沿?cái)?shù)軸向左運(yùn)動(dòng),同時(shí),點(diǎn)B也從原點(diǎn)出發(fā)沿?cái)?shù)軸向右運(yùn)動(dòng),3秒后,兩點(diǎn)相距15個(gè)單位長度.已知點(diǎn)B的速度是點(diǎn)A的速度的4倍(速度單位:單位長度/秒).

1)求出點(diǎn)A、點(diǎn)B運(yùn)動(dòng)的速度,并在數(shù)軸上標(biāo)出A、B兩點(diǎn)從原點(diǎn)出發(fā)運(yùn)動(dòng)3秒時(shí)的位置;

2)若A、B兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng),幾秒時(shí),原點(diǎn)恰好處在點(diǎn)A、點(diǎn)B的正中間?

3)若AB兩點(diǎn)從(1)中的位置開始,仍以原來的速度同時(shí)沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),另一點(diǎn)C同時(shí)從B點(diǎn)位置出發(fā)向A點(diǎn)運(yùn)動(dòng),當(dāng)遇到A點(diǎn)后,立即返回向B點(diǎn)運(yùn)動(dòng),遇到B點(diǎn)后又立即返回向A點(diǎn)運(yùn)動(dòng),如此往返,直到B點(diǎn)追上A點(diǎn)時(shí),C點(diǎn)立即停止運(yùn)動(dòng).若點(diǎn)C一直以20單位長度/秒的速度勻速運(yùn)動(dòng),那么點(diǎn)C從開始運(yùn)動(dòng)到停止運(yùn)動(dòng),行駛的路程是多少個(gè)單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn)(0,﹣3),且頂點(diǎn)坐標(biāo)為(﹣1,﹣4).
(1)求該二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的圖象與x軸的交點(diǎn)為A、B,與y軸的交點(diǎn)為C,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,點(diǎn)EBC邊上,且AEBC于點(diǎn)EDE平分∠CDA.若BEEC=1∶2,則∠BCD的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)A,O,B對應(yīng)的數(shù)分別為﹣5,0,1,點(diǎn)M為數(shù)軸上任意一點(diǎn),其對應(yīng)的數(shù)為x.

請回答問題:

(1)A、B兩點(diǎn)間的距離是_____,若點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等,那么x的值是_____;

(2)若點(diǎn)A先沿著數(shù)軸向右移動(dòng)6個(gè)單位長度,再向左移動(dòng)4個(gè)單位長度后所對應(yīng)的數(shù)字是 ____ ;

(3)當(dāng)x為何值時(shí),點(diǎn)M到點(diǎn)A、點(diǎn)B的距離之和是8;

(4)如果點(diǎn)M以每秒3個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng)時(shí),點(diǎn)A和點(diǎn)B分別以每秒1個(gè)單位長度和每秒4個(gè)單位長度的速度也向左運(yùn)動(dòng),且三點(diǎn)同時(shí)出發(fā),那么幾秒種后點(diǎn)M運(yùn)動(dòng)到點(diǎn)A、點(diǎn)B之間,且點(diǎn)M到點(diǎn)A、點(diǎn)B的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的面積是60,請完成下列問題:

(1)如圖①,AD是△ABCBC邊上的中線則△ABD的面積 _ACD的面積(選填“>”“<”“=”).

(2)如圖②,CD,BE分別是△ABCAB,AC邊上的中線求四邊形ADOE的面積可以用如下方法:連接AO,AD=DB得:SADO=SBDO同理:SCEO=SAEO,設(shè)SADO=x,SCEO=y(tǒng),SBDO=x,SAEO=y(tǒng),由題意得:SABESABC=30,SADCSABC=30,可列方程組為: ,通過解這個(gè)方程組可得四邊形ADOE的面積為 .

(3)如圖③,ADDB=13,CEAE=12,請你計(jì)算四邊形ADOE的面積,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】世界讀書日,新華書店矩形購書優(yōu)惠活動(dòng):一次性購書不超過100元,不享受打折優(yōu)惠;一次性購書超過100元但不超過200元一律八折;一次性購書200元以上一律打六折.小麗在這次活動(dòng)中,兩次購書總共付款190.4元,第二次購書原價(jià)是第一次購書原價(jià)的3倍,那么小麗這兩次購書原價(jià)的總和是_____元.

查看答案和解析>>

同步練習(xí)冊答案