【題目】如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.
【答案】
(1)
解:∵四邊形ABCD為矩形,
∴AB=CD,AB∥CD,
∵DE=BF,
∴AF=CE,AF∥CE,
∴四邊形AFCE是平行四邊形;
(2)
解:∵四邊形AFCE是菱形,
∴AE=CE,
設(shè)DE=x,
則AE=,CE=8﹣x,
則=8﹣x,
解得:x=,
則菱形的邊長為:8﹣=,
周長為:4×=25,
故菱形AFCE的周長為25.
【解析】(1)首先根據(jù)矩形的性質(zhì)可得AB平行且等于CD,然后根據(jù)DE=BF,可得AF平行且等于CE,即可證明四邊形AFCE是平行四邊形;
(2)根據(jù)四邊形AFCE是菱形,可得AE=CE,然后設(shè)DE=x,表示出AE,CE的長度,根據(jù)相等求出x的值,繼而可求得菱形的邊長及周長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c經(jīng)過A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C,連結(jié)BC,點(diǎn)P為拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線l,交直線BC于點(diǎn)G,交x軸于點(diǎn)E.
(1)求拋物線的表達(dá)式;
(2)當(dāng)P位于y軸右邊的拋物線上運(yùn)動(dòng)時(shí),過點(diǎn)C作CF⊥直線l,F(xiàn)為垂足,當(dāng)點(diǎn)P運(yùn)動(dòng)到何處時(shí),以P,C,F(xiàn)為頂點(diǎn)的三角形與△OBC相似?并求出此時(shí)點(diǎn)P的坐標(biāo);
(3)如圖2,當(dāng)點(diǎn)P在位于直線BC上方的拋物線上運(yùn)動(dòng)時(shí),連結(jié)PC,PB,請(qǐng)問△PBC的面積S能否取得最大值?若能,請(qǐng)求出最大面積S,并求出此時(shí)點(diǎn)P的坐標(biāo),若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=4,射線BM和AB互相垂直,點(diǎn)D是AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長交射線BM于點(diǎn)C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是( )
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某化妝品專賣店,為了吸引顧客,在“母親節(jié)”當(dāng)天舉辦了甲、乙兩種品牌化妝品有獎(jiǎng)酬賓活動(dòng),凡購物滿88元,均可得到一次搖獎(jiǎng)的機(jī)會(huì).已知在搖獎(jiǎng)機(jī)內(nèi)裝有2個(gè)紅球和2個(gè)白球,除顏色外其它都相同,搖獎(jiǎng)?wù)弑仨殢膿u獎(jiǎng)機(jī)內(nèi)一次連續(xù)搖出兩個(gè)球,根據(jù)球的顏色決定送禮金券的多少(如表)
甲種品牌化妝品 | 球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 6 | 12 | 6 |
乙種品牌化妝品 | 球 | 兩紅 | 一紅一白 | 兩白 |
禮金券(元) | 12 | 6 | 12 |
(1)請(qǐng)你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率;
(2)如果一個(gè)顧客當(dāng)天在本店購物滿88元,若只考慮獲得最多的禮品券,請(qǐng)你幫助分析選擇購買哪種品牌的化妝品?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)D是等腰直角三角形ABC斜邊BC所在直線上一點(diǎn)(不與點(diǎn)B重合),連接AD.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),將線段AD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°得到線段AE,連接CE.求證:BD=CE,BD⊥CE.
(2)如圖2,當(dāng)點(diǎn)D在線段BC延長線上時(shí),探究AD、BD、CD三條線段之間的數(shù)量關(guān)系,寫出結(jié)論并說明理由;(3)若BD=CD,直接寫出∠BAD的度數(shù).
(3)若BD=CD,直接寫出∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=2∠D,連接OA、OB、OC、AC,OB與AC相交于點(diǎn)E.
(1)求∠OCA的度數(shù);
(2)若∠COB=3∠AOB,OC=2 , 求圖中陰影部分面積(結(jié)果保留π和根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盤錦紅海灘景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對(duì)門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.
(1)a= ,b= ;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到紅海灘景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對(duì)角線AC為邊,按逆時(shí)針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1 , 以對(duì)角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1 , …,按此規(guī)律繼續(xù)下去,則矩形ABnCnCn﹣1的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com