【題目】如圖,在△ABC中,以AB為直徑的⊙O分別與BC,AC相交于點D,E,BD=CD,過點D作⊙O的切線交邊AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為2,CF=1,求的長(結(jié)果保留π).
【答案】(1)詳見解析;(2)
【解析】
(1)連接OD,由切線的性質(zhì)即可得出∠ODF=90°,再由BD=CD,OA=OB可得出OD是△ABC的中位線,根據(jù)三角形中位線的性質(zhì)即可得出,根據(jù)平行線的性質(zhì)即可得出∠CFD=∠ODF=90°,從而證出DF⊥AC;
(2)根據(jù)圓周角定理得出BE⊥AC,證得BE∥DF,即可根據(jù)三角形相似求得EC=2,根據(jù)三角形中位線的性質(zhì)得出AC=4,即可得出AE=EC,進(jìn)一步證得△ABC是等邊三角形,即可得出∠BOD=60°,根據(jù)弧長公式即可得出結(jié)論.
(1)證明:連接OD,如圖所示.
∵DF是⊙O的切線,D為切點,
∴OD⊥DF,
∴∠ODF=90°.
∵BD=CD,OA=OB,
∴OD是△ABC的中位線,
∴OD∥AC,
∴∠CFD=∠ODF=90°,
∴DF⊥AC.
(2)連接BE,
∵AB是直徑,
∴BE⊥AC,
∵DF⊥AC,
∴,
∵FC=1,
∴EC=2,
∵OD=AC=2,
∴AC=4,
∴AE=EC=2,
∴AB=BC,
∵AB=AC=4,
∴AB=BC=AC,
∴△ABC是等邊三角形,
∴∠BAC=60°,
∵OD∥AC,
∴∠BOD=∠BAC=60°,
∴的長:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖AB是⊙O的直徑,PA與⊙O相切于點A,BP與⊙O相交于點D,C為⊙O上的一點,分別連接CB、CD,∠BCD=60°.
(1)求∠ABD的度數(shù);
(2)若AB=6,求PD的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點E、F分別是ABCD的邊BC、AD的中點.
(1)求證:四邊形AECF是平行四邊形;
(2)若BC=10,∠BAC=90°,求AECF的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個數(shù)是( 。
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂點坐標(biāo)為(2,﹣1)的拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求拋物線的表達(dá)式;
(2)設(shè)拋物線的對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;
(3)點E為直線BC上一動點,過點E作y軸的平行線EF,與拋物線交于點F.問是否存在點E,使得以D、E、F為頂點的三角形與△BCO相似?若存在,求點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費(fèi)用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,矩形AOBC的頂點C的坐標(biāo)是(6,4),動點P從點A出發(fā),以每秒1個單位的速度沿線段AC運(yùn)動,同時動點Q從點B出發(fā),以每秒2個單位的速度沿線段BO運(yùn)動,當(dāng)Q到達(dá)O點時,P,Q同時停止運(yùn)動,運(yùn)動時間是t秒(t>0).
(1)如圖1,當(dāng)時間t= 秒時,四邊形APQO是矩形;
(2)如圖2,在P,Q運(yùn)動過程中,當(dāng)PQ=5時,時間t等于 秒;
(3)如圖3,當(dāng)P,Q運(yùn)動到圖中位置時,將矩形沿PQ折疊,點A,O的對應(yīng)點分別是D,E,連接OP,OE,此時∠POE=45°,連接PE,求直線OE的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與矩形AOBC的邊AC、BC分別交于點E,F,E(3,4),且F(8,)為拋物線的頂點,將△CEF沿著EF翻折,點C恰好落在邊OB上的點D處.
(1)求該拋物線的解析式;
(2)點P為線段ED上一動點,連接PF,當(dāng)PF平分∠EFD時,求PD的長度;
(3)四邊形AODE以1個單位/秒的速度沿著x軸向右運(yùn)動,當(dāng)點E與點C重合時停止運(yùn)動,設(shè)運(yùn)動時間為t秒,運(yùn)動后的四邊形A′O′D′E′與△DEF重合部分的面積為S,請直接寫出S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求H點的坐標(biāo)及k的值;
(2)點P在y軸上,使△AMP是以AM為腰的等腰三角形,請直接寫出所有滿足條件的P點坐標(biāo);
(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,點Q(m,0)是x軸上的動點,當(dāng)△MNQ的面積為3時,請求出所有滿足條件的m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com