【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)中的x和y滿足下表:
x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 3 | 0 | -1 | 0 | m | 8 | … |
(1)可求得m的值為________;
(2)在坐標系畫出該函數(shù)的圖象;
(3)當y≥0時,x的取值范圍為_____________
【答案】(1)3;(2)見解析;(3)或
【解析】
(1)根據(jù)表格中的數(shù)據(jù)和二次函數(shù)的性質(zhì)可以求得m的值;
(2)根據(jù)表格中的數(shù)據(jù)可以畫出相應的函數(shù)圖象;
(3)根據(jù)函數(shù)圖象可以直接寫出當y≥0時,x的取值范圍.
(1)由表格可知,該函數(shù)的對稱軸為直線x=2,
∴x=4和x=0時對應的函數(shù)值相等,
∴m=3,
故答案為:3;
(2)由表格中的數(shù)據(jù),可以畫出該函數(shù)的圖象如右圖所示;
(3)由圖象可得,
當y≥0時,x的取值范圍為x≤1或x≥3,
故答案為:x≤1或x≥3.
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的對角線相交于O,點P在射線AO上,∠MPN=90°.
(1)如圖1,當P與點O重合,M、N分別在AD、AB上,AM=2DM,則=__________;
(2)如圖2,點P在CO上,AP=2CP,M為AD的中點,求的值.
(3)如圖3,P在AC的延長線上,M為AD的中點,AP=nCP,則=____________(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(12分)如圖所示是隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12 m,寬是4 m.按照圖中所示的直角坐標系,拋物線可以用y=x2+bx+c表示,且拋物線上的點C到OB的水平距離為3 m,到地面OA的距離為m.
(1)求拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設雙向車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線過O、A、B三點,A(4,0)B(1,-3),P為拋物線上一點,過點P的直線y=x+m與對稱軸交于點Q.
(1)直線PQ與x軸所夾銳角的度數(shù),并求出拋物線的解析式.
(2)當點P在x軸下方的拋物線上時,過點C(2,2)的直線AC與直線PQ交于點D,求: PD+DQ的最大值;②PD.DQ的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△AOB和△ACD均為正三角形,且頂點B、D均在雙曲線(x>0)上,若圖中S△OBP=4,則k的值為( )
A.B.-C.-4D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016廣東省深圳市)荔枝是深圳的特色水果,小明的媽媽先購買了2千克桂味和3千克糯米糍,共花費90元;后又購買了1千克桂味和2千克糯米糍,共花費55元.(每次兩種荔枝的售價都不變)
(1)求桂味和糯米糍的售價分別是每千克多少元;
(2)如果還需購買兩種荔枝共12千克,要求糯米糍的數(shù)量不少于桂味數(shù)量的2倍,請設計一種購買方案,使所需總費用最低.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD是邊AB上的高.
(1)求證:△ABC∽△CBD;
(2)如果AC=4,BC=3,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com