如圖,已知AB、CD是⊙O的直徑,數(shù)學公式,∠AOE=32°,那么∠COE的度數(shù)為________度.

64
分析:根據(jù)等弧所對的圓心角相等求得∠AOE=∠COA=32°,所以∠COE=∠AOE+∠COA=64°.
解答:∵,(已知)
∴∠AOE=∠COA(等弧所對的圓心角相等);
又∠AOE=32°,
∴∠COA=32°,
∴∠COE=∠AOE+∠COA=64°.
故答案是:64°.
點評:本題考查了圓心角、弧、弦的關系.在同圓或等圓中,兩個圓心角、兩條弧、兩條弦三組量之間,如果有一組量相等,那么,它們所對應的其它量也相等.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知AB、CD是⊙O的兩條平行弦,過A點的⊙O的切線AE和DC的延長線交于E點,P為弧
CD
上一點,弦AP、BP與CD分別交于點M、N.
求證:CM:EM=NM:DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

32、如圖,已知AB、CD相交于點O,OB平分∠DOE,若∠DOB=30°,求∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

11、如圖,已知AB=BC=CD=AD,∠DAC=40°,那么∠B=
100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB,CD相交于點0,△ACO≌△BD0,CE∥DF,求證:CE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知AB、CD相交于點O,OE⊥AB,∠EOC=28°,則∠AOD=
62
62
度.

查看答案和解析>>

同步練習冊答案