【題目】(1)(發(fā)現(xiàn))如圖1,在中,分別交于,交于.已知,,,求的值.
思考發(fā)現(xiàn),過點作,交延長線于點,構(gòu)造,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答:的值為______.
(2)(應(yīng)用)如圖3,在四邊形中,,與不平行且,對角線,垂足為.若,,,求的長.
(3)(拓展)如圖4,已知平行四邊形和矩形,與交于點,,且,,判斷與的數(shù)量關(guān)系并證明.
【答案】(1) ;(2);(3).
【解析】
(1)由DE//BC,EF//DC,可證得四邊形DCFE是平行四邊形,求出DE=CF,DC=EF,由DC⊥BE,可得△BEF是直角三角形,利用勾股定理,求出BF的長即為BC+DE的值;
(2)同(1)做CE//DB,交AB延長線于點E,易證四邊形DBEC是平行四邊形,根據(jù)已知可證△DAB△CBA(SAS),得AC=DB,等量代換,可得AC=CE,故△ACE是等腰直角三角形,AE=8,利用勾股定理,即可求得AC;
(3)連接AE、CE,由四邊形ABCD是平行四邊形,四邊形ABEF是矩形,易證得四邊形DCEF是平行四邊形,繼而證得△ACE是等腰直角三角形,求出AC=CE,而DF=CE,即可得出答案.
解:(1)∵DE//BC,EF//DC,
∴四邊形DCFE是平行四邊形,
∴DE=CF,DC=EF,
∴BC+ED=BC+CF=BF,
∵DC⊥BE,DC//EF,
∴∠BEF=90°,在Rt△BEF中,
∵BE=5,EF=DC=3,
∴BF==.
故BC+DE=.
(2)做CE//DB,交AB延長線于點E,
由(1)同理,可證得四邊形DBEC是平行四邊形,BE=DC=3,
在△DAB和△CBA中 ,
∴△DAB△CBA(SAS),
∴DB=AC,
∵四邊形DBEC是平行四邊形,DB=CE,
∴AC=CE,
∵AC⊥DB,
∴AC⊥CE,
∴△ACE是等腰直角三角形,
∵AE=AB+BE=AB+DC=5+3=8,
∴AC=,求得AC=.
故AC的長為.
(3)AC=DF;
證明:連接AE、CE,如圖,
∵四邊形ABCD是平行四邊形,
∴AB//DC,
∵四邊形ABEF是矩形,
∴AB//FE,BF=AE,
∴DC//FE,
∴四邊形DCEF為平行四邊形,
∴CE=DF,
∵四邊形ABEF是矩形,
∴BF=AE,
∵BF=DF,
∴DF=CE,
∴AF=BE,
∵四邊形ABCD是平行四邊形,
∴AD=BC,
在△FAD和△EBC中 ,
∴△FAD△EBC(SSS),
∴∠AFD=∠BEC,
∴∠FEB=∠EFA=90°,
∵∠EBF=60°,∠BFD=30°,
∴∠DFA=90°-30°-(90°-60°)=30°,
∴∠CEB=30°,
∴OE=OB,
∵∠EBF=60°,
∴∠BEA=∠EBF=60°,
∴∠AEC=60°+30°=90°,
即△AEC是等腰直角三角形,
∴AC=CE,
∵DF=CE,
∴AC=DF.
故AC與DF之間的數(shù)量關(guān)系是AC=DF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點D,E,過點D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點G.
(1)求證:DF是⊙O的切線;
(2)若CF=2,DF=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍船只停在C處海域,AB=60(+3)海里,在B處測得C在北偏東45°方向上,A處測得C在北偏西30°方向上,在海岸線AB上有一等他D,測得AD=100海里.
(1)分別求出AC,BC(結(jié)果保留根號)
(2)已知在燈塔D周圍80海里范圍內(nèi)有暗礁群,在A處海監(jiān)船沿AC前往C處盤看,圖中有無觸礁的危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進(jìn)20米到達(dá)點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2﹣10x+16=0的兩個根,且拋物線的對稱軸是直線x=﹣2.
(1)求A、B、C三點的坐標(biāo);
(2)求此拋物線的表達(dá)式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標(biāo),判斷此時△BCE的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于任意一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)請在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形______、______;
(2)如圖,將鈍角△ABC繞點B順時針旋轉(zhuǎn)60°得到△DBE,連接AD、DC、CE,若∠DCE=90°.求證:四邊形ABCD為勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程.
()若方程有實數(shù)根,求k的取值范圍;
()若方程有兩個互為相反數(shù)的實數(shù)根,求k的值,并求此時方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當(dāng)△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com