【題目】如圖1,若△ABC和△ADE為等邊三角形,M,N分別為EB,CD的中點,易證:CD=BE,△AMN是等邊三角形:
(1)當把△ADE繞點A旋轉到圖2的位置時,CD=BE嗎?若相等請證明,若不等于請說明理由;
(2)當把△ADE繞點A旋轉到圖3的位置時,△AMN還是等邊三角形嗎?若是請證明,若不是,請說明理由(可用第一問結論).
【答案】(1) CD=BE.理由見解析;(2)△AMN是等邊三角形.理由見解析.
【解析】
(1)CD=BE.利用“等邊三角形的三條邊相等、三個內角都是60°”的性質證得△ABE≌△ACD;然后根據全等三角形的對應邊相等即可求得結論CD=BE;(2)△AMN是等邊三角形.首先利用全等三角形“△ABE≌△ACD”的對應角相等、已知條件“M、N分別是BE、CD的中點”、等邊△ABC的性質證得△ABM≌△ACN;然后利用全等三角形的對應邊相等、對應角相等求得AM=AN、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一個角是60°的等腰三角形的正三角形.
(1)CD=BE.理由如下:∵△ABC和△ADE為等邊三角形,
∴AB=AC,AD=AE,∠BAC=∠EAD=60°,
∵∠BAE=∠BAC﹣∠EAC=60°﹣∠EAC,
∠DAC=∠DAE﹣∠EAC=60°﹣∠EAC,
∴∠BAE=∠DAC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS)
∴CD=BE
(2)△AMN是等邊三角形.理由如下:∵△ABE≌△ACD,
∴∠ABE=∠ACD.
∵M、N分別是BE、CD的中點,∴BM=CN
∵AB=AC,∠ABE=∠ACD,
在△ABM和△ACN中,
,
∴△ABM≌△ACN(SAS).
∴AM=AN,∠MAB=∠NAC.
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°
∴△AMN是等邊三角形
科目:初中數學 來源: 題型:
【題目】已知,拋物線y=ax+bx+4與x軸交于點A(-3,0)和B(2,0),與y軸交于點C.
(1)求拋物線的解析式;
(2)如圖1,若點D為CB的中點,將線段DB繞點D旋轉,點B的對應點為點G,當點G恰好落在拋物線的對稱軸上時,求點G的坐標;
(3)如圖2,若點D為直線BC或直線AC上的一點,E為x軸上一動點,拋物線y=ax+bx+4對稱軸上是否存在點F,使以B,D,F,E為頂點的四邊形為菱形?若存在,請求出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得BE=6米,塔高DE=9米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F、B、C、E在同一條直線上,點F、A、D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數據:sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】問題原型:如圖①,在矩形中,,點是邊中點,將線段繞點順時針旋轉得到線段,易得的面積為.
初步探究:如圖②,在中,,,將線段繞點順時針旋轉,得到線段,用含的代數式表示的面積,并說明理由.
簡單應用:如圖③,在等腰三角形中,,,將線段繞點順時針旋轉得到線段,直接寫出的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c(a≠0)經過A(﹣1,0)、B(3,0)、C(0,3)三點.點D從C出發(fā),沿線段CO以1個單位/秒的速度向終點O運動,過點D作OC的垂線交BC于點E,作EF∥OC,交拋物線于點F.
(1)求此拋物線的解析式;
(2)小明在探究點D運動時發(fā)現,①當點D與點C重合時,EF長度可看作O;②當點D與點O重合時,EF長度也可以看作O,于是他猜想:設點D運動到OC中點位置時,當線段EF最長,你認為他猜想是否正確,為什么?
(3)連接CF、DF,請直接寫出△CDF為等腰三角形時所有t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有紅、黃兩個盒子,紅盒子中裝有編號分別為1、2、3、4的四個紅球,黃盒子中裝有編號為1、2、3的三個黃球.甲、乙兩人玩摸球游戲,游戲規(guī)則為:甲從紅盒子中每次摸出一個小球,乙從黃盒子中每次摸出一個小球,若兩球編號之和為奇數,則甲勝,否則乙勝.
(1)試用列表或畫樹形圖的方法,求甲獲勝的概率;
(2)請問這個游戲規(guī)則對甲、乙雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知矩形ABCD滿足AB:BC=1: ,把矩形ABCD對折,使CD與AB重合,得折痕EF,把矩形ABFE繞點B逆時針旋轉90°,得到矩形A′BF′E′,連結E′B,交A′F′于點M,連結AC,交EF于點N,連結AM,MN,若矩形ABCD面積為8,則△AMN的面積為( )
A. 4 B. 4 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】按要求完成下列各小題.
(1)解方程:x2+6x+2=2x+7;
(2)如圖是反比例函數y=在第三象限的圖案,點M在該圖象上,且點M到點x軸,y軸的距離都等于|k|,求k的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,有兩個可以自由轉動的均勻轉盤A,B,都被分成3等份,每份內均標有數字,小明和小亮用這兩個轉盤做游戲,游戲規(guī)則如下:分別轉動轉盤A和B,兩個轉盤停止后,將兩個指針所指份內的數字相加(如果指針恰好停在等分線上,那么重轉一次,直到指針指向某一份為止),若和為偶數,則小明獲勝;如果和為奇數,那么小亮獲勝.
(1)請畫出樹狀圖,求小明獲勝的概率P(A)和小亮獲勝的概率P(B).
(2)通過(1)的計算結果說明該游戲的公平性.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com