【題目】東坡商貿(mào)公司購進某種水果的成本為20元/kg,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式為:
,且其日銷售量y(kg)與時間t(天)的關(guān)系如下表:
(1)已知y與t之間的變化規(guī)律符合一次函數(shù)關(guān)系,試求在第30天的日銷售量是多少?
(2)問哪一天的銷售利潤最大?最大日銷售利潤為多少?
(3)在實際銷售的前24天中,公司決定每銷售1kg水果就捐贈n元利潤(n<9)給“精準扶貧”對象.現(xiàn)發(fā)現(xiàn):在前24天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍.
【答案】(1)y=120-2t,60;(2)在第10天的銷售利潤最大,最大利潤為1250元;(3)7≤n<9.
【解析】
試題分析:(1)根據(jù)日銷售量y(kg)與時間t(天)的關(guān)系表,設(shè)y=kt+b,將表中對應(yīng)數(shù)值代入即可求出k,b,從而求出一次函數(shù)關(guān)系式,再將t=30代入所求的一次函數(shù)關(guān)系式中,即可求出第30天的日銷售量.
(2)日銷售利潤=日銷售量×(銷售單價-成本);分1≤t≤24和25≤t≤48兩種情況,按照題目中所給出的銷售單價p(元/kg)與時間t(天)之間的函數(shù)關(guān)系式分別得出銷售利潤的關(guān)系式,再運用二次函數(shù)的圖像及性質(zhì)即可得出結(jié)果.
(3)根據(jù)題意列出日銷售利潤W=(t+30-20-n)(120-2t)= -t2+2(n+5)t+1200-n,此二次函數(shù)的對稱軸為y=2n+10,要使W隨t的增大而增大,2n+10≥24,即可得出n的取值范圍.
試題解析:(1)依題意,設(shè)y=kt+b,將(10,100),(20,80)代入y=kt+b,得:,解得: ,∴日銷售量y(kg)與時間t(天)的關(guān)系 y=120-2t.當t=30時,y=120-60=60.
答:在第30天的日銷售量為60千克.
(2)設(shè)日銷售利潤為W元,則W=(p-20)y.
當1≤t≤24時,W=(t+30-20)(120-t)= =
當t=10時,W最大=1250.
當25≤t≤48時,W=(-t+48-20)(120-2t)= =
由二次函數(shù)的圖像及性質(zhì)知:當t=25時,W最大=1085.
∵1250>1085,∴在第10天的銷售利潤最大,最大利潤為1250元.
(3)依題意,得:W=(t+30-20-n)(120-2t)= ,其對稱軸為y=2n+10,要使W隨t的增大而增大,由二次函數(shù)的圖像及性質(zhì)知:2n+10≥24,解得n≥7.
又∵n<0,∴7≤n<9.
科目:初中數(shù)學 來源: 題型:
【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=﹣3x+3與x軸、y軸分別相交于A、B兩點,拋物線(a<0)經(jīng)過點B.
(1)求該拋物線的函數(shù)表達式;
(2)已知點M是拋物線上的一個動點,并且點M在第一象限內(nèi),連接AM、BM,設(shè)點M的橫坐標為m,△ABM的面積為S,求S與m的函數(shù)表達式,并求出S的最大值;
(3)在(2)的條件下,當S取得最大值時,動點M相應(yīng)的位置記為點M′.
①寫出點M′的坐標;
②將直線l繞點A按順時針方向旋轉(zhuǎn)得到直線l′,當直線l′與直線AM′重合時停止旋轉(zhuǎn),在旋轉(zhuǎn)過程中,直線l′與線段BM′交于點C,設(shè)點B、M′到直線l′的距離分別為d1、d2,當d1+d2最大時,求直線l′旋轉(zhuǎn)的角度(即∠BAC的度數(shù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用科學記數(shù)法表示一個數(shù)字的一般形式為a×10n,其中對字母a和n都有要求,那么對于a的要求是( 。
A.a必須是整數(shù)
B.a必須是正整數(shù)
C.a必須是有理數(shù)
D.a的取值范圍是大于等于1且小于10的有理數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系中,點A、B、C的坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫出△ABC關(guān)于y對稱的△A1B1C1 , 其中,點A、B、C的對應(yīng)點分別為A1、B1、C1;
(2)直接寫出點A1、B1、C1的坐標; A1 , B1 , C1 .
(3)△A1B1C1的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C是線段AB上除點A、B外的任意一點,分別以AC、BC為邊在線段AB的同旁作等邊△ACD和等邊△BCE,連接AE交DC于M,連接BD交CE于N,連接MN.
(1)求證:AE=BD;
(2)求證:MN∥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把代數(shù)式mx2-6mx+9m分解因式,下列結(jié)果中正確的是( )
A.m(x+3)2
B.m(x+3)(x-3)
C.m(x-4)2
D.m(x-3)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各因式分解正確的是( )
A. x2+2x-1=(x-1)2
B. -x2+(-2)2=(x-2)(x+2)
C. x3-4x = x(x+2)(x-2)
D. (x+1)2= x2+2x+1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com