如圖1,A為⊙O的弦EF上的一點(diǎn),OB是和這條弦垂直的半徑,垂足為H,BA的延長(zhǎng)線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線與EF的延長(zhǎng)線相交于點(diǎn)D.
(1)求證:DA=DC;
(2)當(dāng)DF:EF=1:8,且DF=時(shí),求AB•AC的值;
(3)將圖1中的EF所在直線往上平行移動(dòng)到⊙O外,如圖2的位置,使EF與OB,延長(zhǎng)線垂直,垂足為H,A為EF上異于H的一點(diǎn),且AH小于⊙O的半徑,AB的延長(zhǎng)線交⊙O于C,過(guò)C作⊙O的切線交EF于D.試猜想DA=DC是否仍然成立?并證明你的結(jié)論.

【答案】分析:(1)連接過(guò)切點(diǎn)的半徑OC,根據(jù)等角的余角相等進(jìn)行證明∠ACD=∠DAC,從而得到AD=CD;
(2)根據(jù)已知條件求得DF的長(zhǎng),再根據(jù)切割線定理求得CD的長(zhǎng).從而求得DF和EF的長(zhǎng),最后根據(jù)相交弦定理即可求得它們的乘積;
(3)作直徑,構(gòu)造了直接三角形,也構(gòu)造了弦切角所夾的弧所對(duì)的圓周角.根據(jù)等角的余角相等證明∠DAC=∠ACD,從而證明結(jié)論.
解答:(1)證明:連接OC,則OC⊥DC,(1分)
∴∠DCA=90°-∠ACO=90°-∠B.
∵∠DAC=∠BAE=90°-∠B,
∴∠DAC=∠DCA.
∴DA=DC.

(2)解:∵DF:EF=1:8,
∵DF=,
∴EF=8DF=8
∵DC為⊙O的切線,
∴DC2=DF•DE=×9=18.
∵DC=3,
∴AF=2,AE=6
∴AB•AC=AE•AF=24.

(3)解:結(jié)論DA=DC仍然成立.
理由如下:延長(zhǎng)BO交⊙O于K,連接CK,則∠KCB=90°;
∵DC為⊙O的切線,
∴∠DCA=∠CKB=90°-∠CBK.
∵∠CBK=∠HBA,
∴∠BAH=90°-∠HBA=90°-∠CBK.
∴∠DCA=∠BAH.
∴DA=DC.
點(diǎn)評(píng):綜合運(yùn)用了切線的性質(zhì)定理、圓周角定理的推論、切割線定理和相交弦定理進(jìn)行求解證明.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,A為⊙O的弦EF上的一點(diǎn),OB是和這條弦垂直的半徑,垂足為H,BA的延長(zhǎng)線交⊙O于點(diǎn)C,過(guò)點(diǎn)C作⊙O的切線與EF的延長(zhǎng)線相交于點(diǎn)D.
(1)求證:DA=DC;
(2)當(dāng)DF:EF=1:8,且DF=
2
時(shí),求AB•AC的值;
(3)將圖1中的EF所在直線往上平行移動(dòng)到⊙O外,如圖2的位置,使EF與OB,延長(zhǎng)線垂直,垂足為H,A為EF上異于H的一點(diǎn),且AH小于⊙O的半徑,AB的延長(zhǎng)線交⊙O于C,過(guò)C作⊙O的切線交EF于D.試猜想DA=DC是否仍然成立?并證明你的結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖,點(diǎn)C為⊙O的弦AB上一點(diǎn),點(diǎn)P為⊙O上一點(diǎn),且OC⊥CP,則有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知為⊙O的弦(非直徑),的中點(diǎn),的延長(zhǎng)線交圓于點(diǎn),,且交的延長(zhǎng)線于點(diǎn),。求⊙O的半徑.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知為⊙O的弦(非直徑),的中點(diǎn),的延長(zhǎng)線交圓于點(diǎn),,且交的延長(zhǎng)線于點(diǎn)。求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省珠海市九年級(jí)第二次模擬考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖,已知為⊙O的弦(非直徑),的中點(diǎn),的延長(zhǎng)線交圓于點(diǎn),,且交的延長(zhǎng)線于點(diǎn),。求⊙O的半徑.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案