(2013•德州)(1)如圖1,已知△ABC,以AB、AC為邊向△ABC外作等邊△ABD和等邊△ACE,連接BE,CD,請(qǐng)你完成圖形,并證明:BE=CD;(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);
(2)如圖2,已知△ABC,以AB、AC為邊向外作正方形ABFD和正方形ACGE,連接BE,CD,BE與CD有什么數(shù)量關(guān)系?簡(jiǎn)單說(shuō)明理由;
(3)運(yùn)用(1)、(2)解答中所積累的經(jīng)驗(yàn)和知識(shí),完成下題:
如圖3,要測(cè)量池塘兩岸相對(duì)的兩點(diǎn)B,E的距離,已經(jīng)測(cè)得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的長(zhǎng).
分析:(1)分別以A、B為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D,連接AD,BD,同理連接AE,CE,如圖所示,由三角形ABD與三角形ACE都是等邊三角形,得到三對(duì)邊相等,兩個(gè)角相等,都為60度,利用等式的性質(zhì)得到夾角相等,利用SAS得到三角形CAD與三角形EAB全等,利用全等三角形的對(duì)應(yīng)邊相等即可得證;
(2)BE=CD,理由與(1)同理;
(3)根據(jù)(1)、(2)的經(jīng)驗(yàn),過(guò)A作等腰直角三角形ABD,連接CD,由AB=AD=100,利用勾股定理求出BD的長(zhǎng),由題意得到三角形DBC為直角三角形,利用勾股定理求出CD的長(zhǎng),即為BE的長(zhǎng).
解答:解:(1)完成圖形,如圖所示:
證明:∵△ABD和△ACE都是等邊三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,
∵在△CAD和△EAB中,
AD=AB
∠CAD=∠EAB
AC=AE
,
∴△CAD≌△EAB(SAS),
∴BE=CD;

(2)BE=CD,理由同(1),
∵四邊形ABFD和ACGE均為正方形,
∴AD=AB,AC=AE,∠BAD=∠CAE=90°,
∴∠CAD=∠EAB,
∵在△CAD和△EAB中,
AD=AB
∠CAD=∠EAB
AC=AE
,
∴△CAD≌△EAB(SAS),
∴BE=CD;

(3)由(1)、(2)的解題經(jīng)驗(yàn)可知,過(guò)A作等腰直角三角形ABD,∠BAD=90°,
則AD=AB=100米,∠ABD=45°,
∴BD=100
2
米,
連接CD,則由(2)可得BE=CD,
∵∠ABC=45°,∴∠DBC=90°,
在Rt△DBC中,BC=100米,BD=100
2
米,
根據(jù)勾股定理得:CD=
1002+(100
2
)
2
=100
3
米,
則BE=CD=100
3
米.
點(diǎn)評(píng):此題考查了四邊形綜合題,涉及的知識(shí)有:全等三角形的判定與性質(zhì),等邊三角形,等腰直角三角形,以及正方形的性質(zhì),勾股定理,熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州)函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論:
①b2-4c>0;②b+c+1=0;③3b+c+6=0;④當(dāng)1<x<3時(shí),x2+(b-1)x+c<0.
其中正確的個(gè)數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州)下列計(jì)算正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州)森林是地球之肺,每年能為人類提供大約28.3億噸的有機(jī)物.28.3億噸用科學(xué)記數(shù)法表示為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州)如圖,AB∥CD,點(diǎn)E在BC上,且CD=CE,∠D=74°,則∠B的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•德州)圖中三視圖所對(duì)應(yīng)的直觀圖是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案