【題目】如圖,甲、乙為兩座建筑物,它們之間的水平距離BC為30m,在A點測得D點的仰角∠EAD為45°,在B點測得D點的仰角∠CBD為60°,求這兩座建筑物的高度(結(jié)果保留根號)
【答案】解:
如圖,過A作AF⊥CD于點F,
在Rt△BCD中,∠DBC=60°,BC=30m,
∵ =tan∠DBC,
∴CD=BCtan60°=30 m,
∴乙建筑物的高度為30 m;
在Rt△AFD中,∠DAF=45°,
∴DF=AF=BC=30m,
∴AB=CF=CD﹣DF=(30 ﹣30)m,
∴甲建筑物的高度為(30 ﹣30)m.
【解析】在Rt△BCD中可求得CD的長,即求得乙的高度,過A作F⊥CD于點F,在Rt△ADF中可求得DF,則可求得CF的長,即可求得甲的高度.
【考點精析】根據(jù)題目的已知條件,利用關(guān)于仰角俯角問題的相關(guān)知識可以得到問題的答案,需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=3cm,BC=5cm,對角線AC,BD相交于點O,則OA的取值范圍是( )
A.2cm<OA<5cm
B.2cm<OA<8cm
C.1cm<OA<4cm
D.3cm<OA<8cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解本校八年級學生課外閱讀的喜好,隨機抽取該校八年級部分學生進行問卷調(diào)査(每人只選一種書籍).如圖是整理數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答下列問題:
(1)這次活動一共調(diào)查了名學生;
(2)在扇形統(tǒng)計圖中,“其他”所在扇形圓心角等于度;
(3)補全條形統(tǒng)計圖;
(4)若該年級有600名學生,請你估計該年級喜歡“科普常識”的學生人數(shù)約是人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在雙曲線y= 的第一象限的那一支上,AB⊥y軸于點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為 ,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=﹣ +bx+c的圖象經(jīng)過點A(1,0),且當x=0和x=5時所對應(yīng)的函數(shù)值相等.一次函數(shù)y=﹣x+3與二次函數(shù)y=﹣ +bx+c的圖象分別交于B,C兩點,點B在第一象限.
(1)求二次函數(shù)y=﹣ +bx+c的表達式;
(2)連接AB,求AB的長;
(3)連接AC,M是線段AC的中點,將點B繞點M旋轉(zhuǎn)180°得到點N,連接AN,CN,判斷四邊形ABCN的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算結(jié)果正確的是( )
A. ﹣ =﹣
B.(﹣0.1)﹣2=0.01
C.( )2÷ =
D.(﹣m)3?m2=﹣m6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,點P在邊AC上,從點A向點C移動,點Q在邊CB上,從點C向點B移動.若點P,Q均以1cm/s的速度同時出發(fā),且當一點移動到終點時,另一點也隨之停止,連接PQ,則線段PQ的最小值是( )
A.20cm
B.18cm
C.2 cm
D.3 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“直角”在初中幾何學習中無處不在. 如圖,已知∠AOB,請仿照小麗的方式,再用兩種不同的方法判斷∠AOB是否為直角(僅限用直尺和圓規(guī)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點G.若BF=FC=1,試求 的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com