A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 先根據(jù)矩形的性質(zhì)求出BC的長,再由翻折變換的性質(zhì)得出△CEF是直角三角形,利用勾股定理即可求出CF的長,再在△ABC中利用勾股定理即可求出AB的長.
解答 解:∵四邊形ABCD是矩形,AD=8,
∴BC=8,
∵△AEF是△AEB翻折而成,
∴BE=EF=3,AB=AF,△CEF是直角三角形,
∴CE=8-3=5,
在Rt△CEF中,CF=$\sqrt{C{E}^{2}-E{F}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
設(shè)AB=x,
在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,
故選:D.
點評 本題考查的是翻折變換及勾股定理,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等是解答此題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 三內(nèi)角之比為1:2:3 | B. | 三邊長的平方之比為1:2:3 | ||
C. | 三邊長之比為3:4:5 | D. | 三內(nèi)角之比為3:4:5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 1 | C. | -1 | D. | -7 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com