如圖所示,矩形ABCD,折疊矩形的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且=
(1)求證:△AFB∽△FEC;
(2)求矩形的周長.

【答案】分析:(1)矩形的特點是四個角均為直角,折疊的部分所包含的角也是直角,利用在直角三角形中兩銳角互余可得∠BAF=∠CFE,進而可證明△ABF∽△FCE;
(2)利用相似三角形對應邊成比例,再利用勾股定理即可得解.
解答:證明:(1)∵四邊形ABCD是矩形,
∴∠B=∠C=∠D=∠AFE=90°.
∵∠CFE+∠BFA=90°,∠BFA+∠BAF=90°,
∴∠BAF=∠CFE.
∴△ABF∽△FCE.

解:(2)∵=,設EC=3t,F(xiàn)C=4t,則EF=DE=5t,
∴AB=CD=8t.
,
∴BF=6t.
∴AF=10t.
在Rt△AEF中,由勾股定理(10t)2+(5t)2=(52
∴t=1.
∴矩形周長=2(AB+BF+FC)=2(8t+6t+4t)=36(cm).
點評:本題主要考查了矩形的特點、圖形的折疊、相似三角形的判定定理及性質(zhì)等內(nèi)容.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖①,在平面直角坐標系中,已知△ABC是等邊三角形,點B的坐標為(12,0),動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在x軸上.
(1)當t為何值時,點M與點O重合;
(2)求點P坐標和等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在△AOB內(nèi)部作如圖②所示的矩形ODEF,點E在線段AB上.設等邊△PMN和矩形ODEF重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

18、如圖所示,在△ABC中,分別以AB、AC、BC為邊在BC的同側(cè)作等邊△ABD,等邊△ACE、等邊△BCF.
(1)求證:四邊形DAEF是平行四邊形;
(2)探究下列問題:(只填滿足的條件,不需證明)
①當△ABC滿足
∠BAC=150°
條件時,四邊形DAEF是矩形;
②當△ABC滿足
AB=AC≠BC
條件時,四邊形DAEF是菱形;
③當△ABC滿足
∠BAC=60°
條件時,以D、A、E、F為頂點的四邊形不存在.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖①在矩形ABCD中,動點P從點B出發(fā),沿著BC、CD、DA運動到點A停止,設點P運動的路程為x,△ABP的面積為y,如果y與x的函數(shù)圖象如圖②所示,則△ABC的周長為
12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC是等邊三角形,點O為是AC的中點,OB=12,動點P在線段AB上從點A向點B以每秒
3
個單位的速度運動,設運動時間為t秒.以點P為頂點,作等邊△PMN,點M,N在直線OB上,取OB的中點D,以OD為邊在△AOB內(nèi)部作如圖所示的矩形ODEF,點E在線段AB上.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值;
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)設等邊△PMN和矩形ODE F重疊部分的面積為S,請求你直接寫出當0≤t≤2秒時S與t的函數(shù)關系式,并寫出對應的自變量t的取值范圍;
(4)點P在運動過程中,是否存在點M,使得△EFM是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•邵陽)如圖所示,在△ABC中,AB=AC,∠A<90°,邊BC、CA、AB的中點分別是D、E、F,則四邊形AFDE是( 。

查看答案和解析>>

同步練習冊答案