【題目】根據(jù)下列已知條件,分別指出兩個(gè)圖形中的等腰三角形,并利用第一個(gè)圖證明結(jié)論。
(1)如圖①,BD平分∠ABC,DE//AB
(2) 如圖②,AD平分∠BAC , EC//AD
【答案】(1)△BDE是等腰三角形,理由見解析;(2)△ACE是等腰三角形,理由見解析;
【解析】
(1)根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),即可解答;
(2)根據(jù)角平分線的性質(zhì)和平行線的性質(zhì),即可解答;
(1)△BDE是等腰三角形,理由如下:
∵BD平分∠ABC,
∴∠ABD=∠CBD.
∵DE∥AB,
∴∠BDE=∠ABD.
∴∠BDE=∠CBD.
∴△BDE是等腰三角形(有兩個(gè)角相等的三角形是等腰三角形).
(2)△ACE是等腰三角形,理由如下:
∵AD平分∠BAC,
∴∠BAD=∠CAD.
∵EC∥AD,
∴∠BAD=∠BEC,∠DAC=∠ACE.
∴∠BEC=∠ACE.
∴△ACE是等腰三角形(有兩個(gè)角相等的三角形是等腰三角形).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E,F分別為AB,AD上的點(diǎn),且AE=AF,點(diǎn)M是EF的中點(diǎn),連結(jié)CM.
(1)求證:CM⊥EF.
(2)設(shè)正方形ABCD的邊長(zhǎng)為2,若五邊形BCDEF的面積為,請(qǐng)直接寫出CM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF;
求證:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°, AB//CD,M為BC邊上的一點(diǎn),AM平分∠BAD,DM平分∠ADC,
求證:(1) AM⊥DM;
(2) M為BC的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),記頂點(diǎn)都是整點(diǎn)的三角形為整點(diǎn)三角形.如圖,已知整點(diǎn)A(2,3),B(4,4),請(qǐng)?jiān)谒o網(wǎng)格區(qū)域(含邊界)上按要求畫整點(diǎn)三角形.
(1)在圖1中畫一個(gè)△PAB,使點(diǎn)P的橫、縱坐標(biāo)之和等于點(diǎn)A的橫坐標(biāo);
(2)在圖2中畫一個(gè)△PAB,使點(diǎn)P,B橫坐標(biāo)的平方和等于它們縱坐標(biāo)和的4倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,D是BC的中點(diǎn),過D點(diǎn)的直線GF交AC于F,交AC的平行線BG于G點(diǎn),DE⊥DF,交AB于點(diǎn)E,連結(jié)EG、EF.
(1)求證:BG=CF.
(2)請(qǐng)你判斷BE+CF與EF的大小關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市將開展以“走進(jìn)中國(guó)數(shù)學(xué)史”為主題的知識(shí)凳賽活動(dòng),紅樹林學(xué)校對(duì)本校100名參加選拔賽的同學(xué)的成績(jī)按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖:
成績(jī)等級(jí) | 頻數(shù)(人數(shù)) | 頻率 |
A | 4 | 0.04 |
B | m | 0.51 |
C | n | |
D | ||
合計(jì) | 100 | 1 |
(1)求m= ,n= ;
(2)在扇形統(tǒng)計(jì)圖中,求“C等級(jí)”所對(duì)應(yīng)心角的度數(shù);
(3)成績(jī)等級(jí)為A的4名同學(xué)中有1名男生和3名女生,現(xiàn)從中隨機(jī)挑選2名同學(xué)代表學(xué)校參加全市比賽,請(qǐng)用樹狀圖法或者列表法求出恰好選中“1男1女”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)有一個(gè)均勻的轉(zhuǎn)盤被平均分成六等份,分別標(biāo)有2、3、4、5、6、7這六個(gè)數(shù)字,轉(zhuǎn)動(dòng)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止時(shí),指針指向的數(shù)字即為轉(zhuǎn)出的數(shù)字(當(dāng)指針恰好指在分界線上時(shí)重轉(zhuǎn)).
(1)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)出的數(shù)字大于3的概率是______(直接填空);
(2)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤,轉(zhuǎn)盤停止后記下轉(zhuǎn)出的數(shù)字,并與數(shù)字3和4分別為三條線段的長(zhǎng)度,關(guān)于這三條線段:
①能構(gòu)成三角形的概率是______(直接填空);
②能構(gòu)成等腰三角形的概率是______(直接填空).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字,完成解答過程.
(1),,,則 .
并且用含有的式子表示發(fā)現(xiàn)的規(guī)律 .
(2)根據(jù)上述方法計(jì)算:
(3)根據(jù)(1),(2)的方法,我們可以猜測(cè)下列結(jié)論:
(其中均為正整數(shù)),
并計(jì)算
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com