【題目】如圖,在△ABC中,AB是⊙O的直徑,AC與⊙O交于點(diǎn)D,點(diǎn)E在上,連接DE,AE,連接CE并延長交AB于點(diǎn)F,∠AED=∠ACF.
(1)求證:CF⊥AB;
(2)若CD=4,CB=4,cos∠ACF=,求EF的長.
【答案】(1)詳見解析;(2)2.
【解析】試題分析:(1)連接BD,由AB是 O的直徑,得到∠ADB=90°,根據(jù)余角的性質(zhì)得到∠CFA=180°-(DAB+∠3)=90°,于是得到結(jié)論;
(2)連接OE,由∠ADB=90°,得到∠CDB=180°-∠ADB=90°,根據(jù)勾股定理得到DB==8解直角三角形得到CD=4,根據(jù)勾股定理即可得到結(jié)論.
試題解析:(1)連接BD,
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠DAB+∠1=90°,
∵∠1=∠2,∠2=∠3,
∴∠1=∠3,
∴∠DAB+∠3=90°,
∴∠CFA=180°﹣(DAB+∠3)=90°,
∴CF⊥AB;
(2)連接OE,
∵∠ADB=90°,
∴∠CDB=180°﹣∠ADB=90°,
∵在Rt△CDB中,CD=4,CB=4,
∴DB==8,
∵∠1=∠3,
∴cos∠1=cos∠3==,
∴AB=10,
∴OA=OE=5,AD==6,
∵CD=4,∴AC=AD+CD=10,
∵CF=ACcos∠3=8,
∴AF==6,
∴OF=AF﹣OA=1,
∴EF==2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個(gè)方格的邊長均為1個(gè)單位長度).
(1)請畫出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對稱;
(2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市舉行“非常時(shí)期,非常的愛”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機(jī)抽取了部分參賽征文,統(tǒng)計(jì)了他們的成績,并繪制了如下不完整的兩幅統(tǒng)計(jì)圖表.
請根據(jù)以上信息,解決下列問題:
(1)征文比賽成績頻數(shù)分布表中的值是_______,的值是_______;
(2)補(bǔ)全征文比賽成績頻數(shù)分布直方圖;
(3)若80分以上(含80分)的征文將被評為一等獎,試估計(jì)全市獲得一等獎?wù)魑牡钠獢?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=2x+4的圖象與x、y軸分別相交于點(diǎn)A、B,四邊形ABCD是正方形.
(1)求點(diǎn)A、B、D的坐標(biāo);
(2)求直線BD的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F為BC中點(diǎn),BE與DF,DC分別交于點(diǎn)G,H,∠ABE=∠CBE.
(1)線段BH與AC相等嗎?若相等給予證明,若不相等請說明理由;
(2)求證:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】哈市要對2.8萬名初中生“學(xué)段人數(shù)分布情況”進(jìn)行調(diào)查,采取隨機(jī)抽樣的方法從四個(gè)學(xué)年中抽取了若干名學(xué)生,并將調(diào)查結(jié)果繪制成了如下兩幅不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請根據(jù)圖中提供的信息解答下列問題:
(1)在這次隨機(jī)抽樣中,一共調(diào)查了多少名學(xué)生?
(2)請通過計(jì)算補(bǔ)全條形統(tǒng)計(jì)圖,并求出六年級所對應(yīng)扇形的圓心角的度數(shù);
(3)全市共有2.8萬名學(xué)生,請你估計(jì)全市六、七年級的學(xué)生一共有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為豐富學(xué)生課外活動,某校積極開展社團(tuán)活動,學(xué)生可根據(jù)自己的愛好選擇一項(xiàng),已知該校開設(shè)的體育社團(tuán)有:A:籃球,B:排球C:足球;D:羽毛球,E:乒乓球.李老師對某年級同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖),則以下結(jié)論不正確的是( )
A.選科目E的有5人
B.選科目D的扇形圓心角是72°
C.選科目A的人數(shù)占體育社團(tuán)人數(shù)的一半
D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數(shù)少21.6°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購買2個(gè)足球和3個(gè)籃球共需340元,購買5個(gè)足球和2個(gè)籃球共需410元.
(1)購買一個(gè)足球、一個(gè)籃球各需多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需購買足球和籃球共96個(gè),并且總費(fèi)用不超過5720元.問最多可以購買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:某數(shù)學(xué)興趣小組把兩個(gè)等腰直角三角形的直角頂點(diǎn)重合,發(fā)現(xiàn)了一些有趣的結(jié)論.
結(jié)論一:
(1)如圖1,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,連接BD,CE,試說明△ADB≌△AEC;
結(jié)論二:
(2)如圖2,在(1)的條件下,若點(diǎn)E在BC邊上,試說明DB⊥BC;
應(yīng)用:
(3)如圖3,在四邊形ABCD中,∠ABC=∠ADC=90°,AB=CB,∠BAD+∠BCD=180°,連接BD,BD=7cm,求四邊形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com